

Auto-Illustrator
Users Guide

Signwave Auto-Illustrator 1.1
http://www.auto-Illustrator.com/

Mac is a trademark of Apple Computer, Inc., registered in the U.S. and other
countries. The "Built for Mac OS X" graphic is a trademark of Apple Computer, Inc.,
used under license.

Signwave UK
2nd Floor North
Rutland House
42-46 New Road
London
E1 2AX
United Kingdom

+44(0)7711 623498
mail@signwave.co.uk
support@auto-Illustrator.com

http://www.auto-Illustrator.com/

Auto-Illustrator Users Guide

 2

Legal notice
This manual, its design and parts of its content is copyright © 2002 Signwave UK.
Signwave Auto-Illustrator is copyright © 2000 – 2002 Signwave UK. Signwave, Auto-
Illustrator, Autoshop, AUT, AFX, KJX, XEO, xeoObject are copyright and/or
trademarks of Signwave UK.

Apple, Macintosh and MacOS are copyright, trademarks or registered trademarks of
Apple Computer, Inc. Microsoft, Windows are copyright, trademarks or registered
trademarks of Microsoft Corporation. Linux is a free operating system. Cycling ’74
and Max are copyright, trademarks or registered trademarks of Miller Puckette
and/or Cycling ’74. pd is copyright Miller Puckette. REALbasic is copyright and a
registered trademark of REAL Software, Inc. Other trademarks, symbols, logos and
names are copyright, trademarks or registered trademarks of their respective
owners.

Selected texts and essays are © copyright their respective owners, authors or
publishers. All content is published with acknowledgement and permission of the
respective owners, authors or publishers, and may not be republished without
permission of those owners, authors or publishers.

No part of this manual may be copied, reproduced, transmitted, hired, lent or resold
in any form, in its entirety or as an extract, without the express permission of the
author.

Published by Liquid Press (Institute of Digital Art & Technology) and Spacex in
conjunction with the GENERATOR exhibition, organised by Spacex and STAR
(Science Technology Art Research) with support from I-DAT and the Arts Council of
England.

ISBN 0950751693

Auto-Illustrator Users Guide

 3

TABLE OF CONTENTS

INTRODUCTION 7

USING AUTO-ILLUSTRATOR 9

The Tool Palette 9
Select Tool 11
Point Tool 12
Polygon Tool 13
Text Tool 15
Oval Tool 17
Rectangle Tool 20
Pencil Tool 21
Brush Tool 23
Magnet Tool 25
Parallax Tool 26
Rotate Tool 27
Scale Tool 29
Bug Add Tool 30
Bug Remove Tool 32
Stroke Tinting Tool 33
Scissors Tool 34
Tinting Tool 35
Spray Tool 36
Hand Tool 38
Zoom Tool 38
Colour Picker 39
Fill Selector 40
Hollow Selector 40

Advanced features of Auto-Illustrator 41
The Automation Tool 41
The Recording Tool 42
The Max tcpServer / pd netreceive Tool 43
The Select nice shapes function 44
The Preferences dialog 45

TECHNOLOGIES 47

Introducing KJX™ Technology 47
How it works 48
Auto-Illustrator and KJX™ 48
Optimising your KJX™ System 49
Exporting your KJX™ Profile 49

Auto-Illustrator Users Guide

 4

xeoObjects and Plug-In Technology 51

Technical Information for xeoObject Developers 51
Introduction 51
What is a xeoObject? 52
Language Syntax 52

CRITICAL TEXTS AND ESSAYS 59

Acknowledgements 59

A brief history: Auto-Illustrator 61

Interview Yourself 65

4x4: Life and Oblivion: Generative Design 69

How I Drew One Of My Pictures 71
Interfaces 71
The Anti-Interface 71
Reasoning 72
How to scribble 75
How to be a bug 77
How to make up words 78
How to draw a picture 80

How I Drew One of My Pictures: or, The Authorship of
Generative Art 81

Authorship 81
Execution 82
Generative creativity 83
Autonomy 85
Creative agency 86

Useless Utilities 89

Concepts, Notations, Software Art 101
Software and Concept Notations 101
Software Art 106
Footnotes 111
References 112

Interview with Adrian Ward 114

INDEX 123

Auto-Illustrator Users Guide

 5

Auto-Illustrator Users Guide

 6

Auto-Illustrator Users Guide

 7

INTRODUCTION

Signwave Auto-Illustrator is a vector-based generative graphic
design application for Macintosh and Windows based computers. It
is also a software artwork, meaning that it exists not only as a tool
for your own use, but also as the result of the creative expression of
an artist. This document reveals some of the intentions of Auto-
Illustrator as an artistic project, as well as showing you more
practically how to use the software.

Winner of the 2001 Transmediale Artistic Software award

Winner of the 2001 Overall Cubies Awards, Real Software.

Honourary mention at the 2001 Prix Ars Electronica
Interactive Art category

Auto-Illustrator Users Guide

 8

Auto-Illustrator Users Guide

 9

USING AUTO-ILLUSTRATOR

The Tool Palette
Most of the main functions for manipulating artwork are done using
the tools available in the floating tool palette.

Many of the tools are similar to their counterparts in other graphic
design applications, although most of them differ slightly and
operate in unpredictable ways.

The following pages introduce each of the tool’s functions, and
describes what sort of effects you can achieve with them.

However, it is important you play with these tools for yourself, to
discover exactly what you can do with them, rather than just
believing what it says in this manual.

Auto-Illustrator Users Guide

 10

Auto-Illustrator Users Guide

 11

Select Tool
Select objects in your document

Use the select tool to pick out individual objects in your document
and move them about. Selected objects are highlighted with a blue
hairline, and control points are made visible.

To select a single object, simply click on it once. Where objects
overlap each other, the topmost object will be selected.

To select multiple objects, hold down shift while clicking objects.
Shift-clicking on an object that is already selected causes it to be
unselected.

To quickly select multiple objects in one area, drag a rubber
rectangle around them. To do this, move your cursor to a location
outside any objects, and hold down the mouse button while moving
your mouse across your document. Lift the mouse button when all
the desired objects are selected.

To move selected objects, simply move your mouse on top of one
of the selected objects. Now push down on your mouse button and
move the mouse - the objects will be dragged along with the
mouse.

Note
While dragging objects around, you will only see a blue outline version of the
currently selected objects. You can change this behaviour by going to the Interface
group in the Preferences dialog and unchecking Outline dragging.

Auto-Illustrator Users Guide

 12

Point Tool
Move control points of selected objects

Use the point tool to manipulate the appearance of individual
objects in your document. When an object is selected, you can see
the individual control points shown as little blue squares between
the connecting outline. Splines also show extra control points that
extend on dotted handles away from the curve they control.

To move a control point, simply move your mouse over it, and hold
down the mouse button while dragging it to a new location. The
selected object will change shape accordingly.

For splines, each segment has two control points that define the
shape of the curve between the start and the end of the segment.
Changing the position of these spline 'handles' will change the
shape and nature of the spline segment. Moving one of the regular
segment (non-handle) control points will also move the associated
extended spline handles - this is to preserve the appearance of
your splines.

Auto-Illustrator Users Guide

 13

Polygon Tool
Create new shapes

Use the polygon tool to add new shapes to your document. When
first selected, the polygon tool is used to add the first point of a new
shape into your document - you will not see anything at this stage,
because a shape is defined as two or more points.

The next click will produce a straight line between the first point and
the second. Subsequent clicks keeps adding straight line segments.

Creating Spline Segments
To create a curved spline between the last point you clicked, and
the next one you are about the put down, don't lift the mouse button
straight away. Instead, drag the mouse away from the new point
slightly - a spline will be created. Continuing to move the mouse
controls the position of the second spline control handle, which
affects the appearance of the new spline segment.

You can mix and match straight and spline segments in the same
shape. Just remember to click-and-release for straight segments,
and click-and-drag for spline segments. Also remember you can
always use the Point Tool to change control points if you don’t get
them right first time round.

Auto-Illustrator Users Guide

 14

The sequence of events resulting in an unclosed polygon containing both straight
and spline segments. Spline handles a. and b. were adjusted afterwards using the
point tool.

Filled or Hollow shapes
Use the Filled and Hollow buttons at the bottom of the tool palette if
your newly created shape doesn't appear how you want it. Doing
this doesn't interfere with the process of creating new shapes. You
can switch between the filled and hollow states while you are
creating your polygon.

Closing Shapes
You can choose to leave a shape open (ie, the last point in the
shape does not meet the first), or you can close your shape by
clicking again on the first point you placed. Note that filled shapes
always look closed by nature, but might not actually contain that
last control point to close the shape. This subtly affects the
behaviour of other tools and functions in the software, so it is
important to understand that just because a shape looks closed, it
might not actually be so.

You can always automatically close shapes by using the Close
incomplete shapes option in the Object menu, under the Path
submenu.

Auto-Illustrator Users Guide

 15

Text Tool
Add text to your document

To add some text to your document, simply take the text tool and
click once where you want the text to start. Typing on your
keyboard adds characters to this text.

You can alter the settings for your text objects by clicking on the
Font tab in the Text options floating palette. This palette only
appears when the text tool is selected, and makes changes to all
currently selected text objects. To make changes to the text point
size, place your mouse over the size label, hold down the
mousebutton and drag up and down.

Using the delete/backspace key changes behaviour when you are
editing a piece of text - while there are characters in the selected
text object, the delete key removes the last character. When all
characters have been deleted, and the text object is empty,
pressing the delete key removes the text object altogether from
your document.

Generative Feature
If you have the Creative option ticked in the Text Options floating
palette (it appears when you select the text tool), the text that
appears and the characters you type will be decided by the
software. It likes to make up words. Sometimes they make sense.

Auto-Illustrator Users Guide

 16

Luckily, you get some degree of control over this. You can adjust
the size of words created by the creative text tool by changing the
Verbosity slider. You can make words slightly more foreign
sounding by ticking the Slightly foreign option.

About creative text
The creative text tool applies a weighted stochastic selection
algorithm to a predetermined set of vowels, consonants, and certain
phonemes to generate words. The weighting of this selection is
designed to favour more common combinations found in regular
English, although their construction is purely random.

Using the slightly foreign feature substitutes the selection set of
combinations for ones that use extented characters not normally
found in the English language. This alternative set does not favour
any particular language or syntactical arrangement.

Auto-Illustrator Users Guide

 17

Oval Tool
Draw ovals and other round shapes

The oval tool creates round shapes in your document. To use,
simply move your mouse cursor where you want the upper-left
edge of your oval, and holding down the mouse button, drag an
oval out until it matches the shape you require.

If you hold down the SHIFT key while you drag out your oval, the
oval will retain an equal aspect ratio - that is, its width will be the
same as its height. For ovals, this results in a circle.

Note
The oval tool creates a basic path made up of four spline segments. You need to be
aware of this if you intend to modify or mutate your oval shapes.

Generative Feature
The Shape options floating palette contains a number of settings
that affect the appearance of shapes that you create using the Oval
and Rectangle tools.

Auto-Illustrator Users Guide

 18

Style
You can choose from three different styles when producing your
shapes:

Childish
The childish Auto-Illustrator does not draw plain shapes
such as ovals and rectangles, but instead prefers to create
smiley faces and houses. Every time you use one of the
shape tools, the picture generated will be slightly different.

Adult
Adult shapes are boring and as you'd expect.

Artistic
The artistic Auto-Illustrator chooses to make a conceptual
statement about the dematerialisation of the artwork in the
age of digital technology. No visible changes to your
document will be seen when you use the artistic shape
tools, this indicates a reaction against the usual
deterministic paradigm usually associated with software
(and, to a degree, graphic design also). You may choose to
use this style when you are producing conceptual artwork.

Preciseness
You may determine how precise the generated shapes are by
changing the value of this slider.

Shabby childish ovals Precise childish ovals

Note
Changing the Preciseness value doesn’t affect Artistic shapes. Conceptual art
doesn’t concentrate much on technique.

Auto-Illustrator Users Guide

 19

Montage shapes
To have Auto-Illustrator montage multiple shapes into your
document for you, check the Montage shapes box. After you have
created your shape, Auto-Illustrator will augment your placement
with additional shapes that surround your shape.

Auto-Illustrator deploys a recursive montaging routine with a
stochastic decay factor for each child node of the shape - in some
cases you may find very few surrounding shapes, other times there
may be many. Often, the size of your original shape makes a big
difference: large shapes usually produce a greater number of child
node shapes, because it takes longer for the decay factor (which
regulates the size of the child nodes) to fall below the threshold that
determines whether a child node will breed further children.

Auto-Illustrator Users Guide

 20

Rectangle Tool
Draw rectangles and other square shapes

The rectangle tool creates rectangular shapes in your document. To
use, simply move your mouse cursor where you want the upper-left
edge of your rectangle, and holding down the mouse button, drag a
rectangle out until it matches the shape you require.

If you hold down the SHIFT key while you drag out your rectangle,
the rectangle will retain an equal aspect ratio - that is, its width will
be the same as its height. For rectangles, this results in a square.

Note
See the Oval Tool for details about the generative nature, styling and montaging
options for the Rectangle Tool – they are the same.

Preciseness
You may determine how precise the generated shapes are by
changing the value of this slider.

Shabby childish rectangles Precise childish rectangles

Auto-Illustrator Users Guide

 21

Pencil Tool
Draw freehand shapes

You can use the pencil tool to draw freehand paths into your
document. There are two different ways that this is achieved, and
both will affect how you modify and change these paths later - You
should read the Felt-tip pen section below for clarification.

To draw a path using the pencil tool, move your mouse to where
you want the path to begin, and holding down the mouse button,
move your mouse around your document, following the path you
would like the pencil tool to make.

Generative Feature
When you use the pencil tool, Auto-Illustrator doesn't actually use
your mouse coordinates to generate the path directly. Instead, it
merely takes cues from your mouse coordinates and has its own
rules for how the path it draws should look.

Auto-Illustrator Users Guide

 22

The Insipid/Cursive slider controls the behaviour of this routine. If
you change the setting to be very cursive, you will find that the
pencil tool prefers to make grand, sweeping gestures that deviate
wildly from your original mouse coordinates. Insipid use of the
pencil tool produces lame and limp paths.

Felt-tip pen
Checking the felt-tip pen option changes the way the pencil tool
creates path objects. When checked, the stroke weight of each
segment of the path will vary according to how fast the pencil was
moving at that time, like pushing down harder on a felt-tip pen may
produce bigger lines. As this stroke weight varies between
segments, it is necessary to produce this path as lots of individual
line objects that are grouped together. This is important to
understand if you later try to use some of the distortion and
transformation tools, because the line will break apart easily.

Non-felt-tip pen pencil paths (!) are, on the other hand, created as
single objects and will not break apart later on. However, this
means that the path will have one single stroke weight, which is
determined by using the Stroke Inspector floating palette. These
paths are actually un-closed polygons, and are identical in structure
to those produced using the Polygon tool.

Auto-Illustrator Users Guide

 23

Brush Tool
Make expressions with a brush

The brush tool is a completely autonomous drawing tool that makes
marks on your document. When you click somewhere in your
document, Auto-Illustrator uses a brush to draw stochastic marks
by itself.

You can change the behaviour of the brush tool by changing the
settings in the Brush options floating palette.

Auto-Illustrator Users Guide

 24

Jerkiness
As Auto-Illustrator moves the brush across your document, it
occasionally jerks the brush in the opposite direction. This slider
dictates the chance that this occurs on every movement of the
brush. A high jerkiness value means that the brush will jerk every
time it is moved, a low jerkiness value produces straighter brush
marks with no jerks.

Wander
Similarly, the wander slider affects how much wander will be
introduced into the brush path at every movement. Low wander
values cause straight lines that follow on from previous segments,
high wander values make the brush deviate from that path more.

Distance
The distance slider affects how far the brush should move for each
segment. Low distance values produce very short stuttered marks,
high values cause long strokes that can span the entire dimensions
of your document.

Length
The length slider controls for how long the brush should be used
each time. The higher this value, the more marks the brush will
make in your document.

Use crayon
The crayon option (formerly known as Crayola™ Compatability
Mode in Autoshop) causes the brush marks to be rendered with a
crayon with varied stroke weight at each segment.

Watch me scribbling
Checking this causes Auto-Illustrator to refresh the document
window at each segment drawn, so you can see the brush tool
drawing your artwork in real-time.

I am incapable
Pushing this button allows Auto-Illustrator to decide settings for
itself. Use this button if lacking inspiration.

Auto-Illustrator Users Guide

 25

Magnet Tool
Repels and attracts object control points

The magnet tool is a simple but effective way of distorting the
control points that make up the objects in your document. When
selected, you can click and drag around your document to see
control points reacting to the magnet tool when they are within a
certain range of influence.

Promiscuity
Changing the Promiscuity slider affects the strength of the magnet.
Intimate magnets are weaker and affect only very local control
points, whereas promiscuous magnets prefer to exert force on a
wider field, and are stronger. However, you may find promiscuous
magnets difficult to control, producing undesired results if not
controlled properly.

Reverse polarity
This does exactly what it says.

Auto-Illustrator Users Guide

 26

Parallax Tool
Parallax scrolling

If you have objects in your document of varying stroke weights, you
can slide them about your document at varying speeds, producing a
parallax style distortion that implies a third dimension (Z-depth) that
goes into and outwards from your monitor.

Shapes that do not vary in stroke weight will not slide in parallax.

There are no options for this tool.

Auto-Illustrator Users Guide

 27

Rotate Tool
Twist your document

The rotate tool is a powerful and expressive system for
transforming your documents in abstract ways. There are two
different ways you can use the rotate tool, one of which may be
familiar to you.

Rotate in flat space
Flat rotations occur in 2D. Select one or more shapes you want to
rotate using the select tool, and then select the rotate tool. Ensuring
the Rotate options floating palette shows the Rotate in flat space
option, click down anywhere in your document and drag the mouse
left or right. The selected objects will rotate around their centre
point. This centre point is determined by the average coordinates of
all selected objects, if you select different objects the centre point of
rotation will be different.

Flat / Twist
Changing this slider changes the behaviour of flat rotations. When
set to twist, objects with thicker stroke weights rotate quicker than
thinner stroke weighted objects. If you have several objects all with
varying stroke weights (such as produced by the Weight Tool), then
this will twist your artwork in interesting ways.

Auto-Illustrator Users Guide

 28

Rotate in 3D space
3D rotations are a little more complex computationally, but as a
general rule, they extend rotational transformations into a fictional
3rd dimension (a Z-depth), which projects into and out from your
monitor.

Objects have depth
When you check this option, 3D rotations assume that an object's
Z-depth is determined by its stroke weight, much like the flat
rotation's twist feature. Again, objects with varying stroke weights
will produce exciting and unexpected results, radically transforming
your document into a pseudo-3D space demonstrating the impact
of real-world spatial transformations in a 2D-based architecture
model.

All objects have same axis
Checking this option ensures that all 3D rotations occur around a
single centre-point (the average coordinate of all selected objects)
rather than each object having its own centre point for rotation.
Playing with this feature in combination with the have depth feature
results in amazing transformations that decouple one object's 3D
space with another while maintaining a uniform spatial
transformation property.

Auto-Illustrator Users Guide

 29

Scale Tool
Parallax scaling

Much like the Parallax tool, the scale tool changes the scaling of the
document, but applies different scaling ratios depending upon the
stroke weight of the selected objects in your document. Doing so
implies a third dimension (Z-depth) that goes into and outwards
from your monitor.

Shapes that do not vary in stroke weight will not scale in parallax.

If you hold down the option/alt key while using the scale tool, the
parallax scaling feature is disabled, and the Scale Tool behaves
just like an ordinary scale tool.

There are no options for this tool.

Auto-Illustrator Users Guide

 30

Bug Add Tool
Crawling bugs can draw your artwork for you

You can place bugs onto your document that will wander around
and leave lines behind them. When bugs bump into objects in your
document, they usually turn in a different direction and keep
walking.

If you place several bugs down on the same document, they'll all
start bumping into each other's tracks, and produce a lovely mess.

The Bug options floating palette shows you quickly how many bugs
are currently wandering around your document, and gives you a
quick and easy way to exterminate them all should they be getting
too unruly.

Bug Behaviours
By pressing the Behaviours tab on the Bug options floating palette,
you can control the way the bugs behave by adjusting the sliders.

Auto-Illustrator Users Guide

 31

Nervousness
Nervous bugs run quickly.

Attention
A bug that is not paying attention might actually ignore something it
walks over, and not change direction as it is supposed to.

Maturity
Mature bugs have learnt not to be so hasty in changing direction -
they will wait a bit longer before deciding to change direction. They
are less impulsive.

Distraction
A distracted bug is not looking where it is going, and might actually
change direction when it is not actually bumping into something in
your document. This can be problematic, and you may end up with
lots of tiny squiggles because your bugs are too distracted and are
always walking in different directions.

Orientating
You can change which direction is North by changing this compass.

Note
Use the Bug Remove Tool to remove bugs you have previously added to your
document.

Bugs get saved in their current state when you saved your
document. As soon as you open the document again, the bugs will
continue where they were left last time you were editing the
document. Watch out for that - your documents may not open in the
state that you expect them to!

Auto-Illustrator Users Guide

 32

Bug Remove Tool
Remove bugs from your artwork

You can easily debug your document by selecting this tool and
clicking on your document. For each click, the last bug you added
will be removed.

If you want to remove all bugs at once, either click repeatedly with
the Bug Remove tool until you get a message saying there are no
more bugs, or use the Exterminate button in the Bug options
floating palette, which commits mass genocide with one easy click
of the mouse.

Sadly, we were unable to get this tool to automatically debug our
own software. It should only be used to debug Auto-Illustrator
documents. We cannot guarantee usability for any other form of
debugging.

Auto-Illustrator Users Guide

 33

Stroke Tinting Tool
Quickly restroke your objects

When you drag this tool over your document, selected objects will
be "tinted" with new stroke weights according to how close they are
to the stroking tool.

This is a great way to quickly change the dynamic properties of
your document, because other tools such as the Rotate Tool and
the Parallax tools use the stroke weight of each object to determine
how they should be distorted.

This is the recommended method for the quickest way to generate
interesting dynamic artworks.

Tint options
By adjusting the Delicate / Heavy-handed slider, you can affect how
strong the weight tinting tool is. A delicate tinter causes only very
close objects to be tinted strongly, whereas heavy-handed tinters
are careless, and tend to affect more of the document's objects.

Auto-Illustrator Users Guide

 34

Scissors Tool
Chop up your artwork

The scissors tool can be used to cut paths and edges of polygons
in half. Simply click on a path where you want it to be cut in half,
and the segment will split in half like a piece of elastic.

The scissors tool comes with an automatic multimedia effect. To
disable this digital multimedia effect, switch off your computer’s
speakers, or cut the speaker cable with a pair of pliers if there is no
switch.

Auto-Illustrator Users Guide

 35

Tinting Tool
Quickly tint your objects

Much like the Stroke tinting tool, the tinting tool applies the current
selected colour in a gradient fashion to the objects in your
document. Objects closer to the tinting tool are brighter in colour,
objects further away slowly fade away to black.

Tint options
By adjusting the Delicate / Heavy-handed slider, you can affect how
strong the tinting tool is. A delicate tinter causes only very close
objects to be tinted strongly, whereas heavy-handed tinters are
careless, and tend to affect more of the document's objects.

Auto-Illustrator Users Guide

 36

Spray Tool
Apply repetitions

The spray-can tool can be used in several different ways. In
general, it is useful for applying an effect or transformation to the
objects in your document in a quick and easy manner.

Spray familiar shapes
Using the spray-can with this option allows you to quickly duplicate
shapes that are already in your document. When you click and drag
around your document, shapes that you have previously created
are duplicated underneath your mouse cursor.

Auto-Illustrator Users Guide

 37

Note
If you haven't already designed any shapes in your document, using the spray-can
like this pointless. It sprays nothing onto nothing, and creates nothing from nothing.

Spray favourite colours
This option takes colours from your Colour Swatch, and applies
them to the objects in your document. Wave the spray can over
your document objects to colourise them with your favourite
colours.

Spray current colour
Very similar to the Spray favourite colours option, except this
sprays the current colour onto objects in your document.

Weak / Strong
Change this slider to alter how strong your spray can is.

Auto-Illustrator Users Guide

 38

Hand Tool
Scroll around your document

This tool makes it easy to scroll around your document without
using the scroll bars. Simply click and drag in your document to
move the current view around. Note that this doesn't actually
change the positions of objects in your artwork (use the Select Tool
for that).

You can hold down the SPACE key before clicking and dragging to
quickly switch to the hand tool.

Double-click the hand tool in the tool palette to automatically zoom
the document so that it fits in the document window.

Zoom Tool
Zoom in and out

Using this tool you can zoom in and out of your document,
inspecting details as you wish. Simple click somewhere in your
document to zoom in by 200% to that part, and alt-click to zoom
back out.

You can also use the slider in the lower-left corner of the document
window to achieve this. There are various shortcut keys and menu
options in the View menu that switch to pre-set zoom views.

Double-click the Zoom Tool in the tool palette to have the document
automatically zoom to 100%

Auto-Illustrator Users Guide

 39

Colour Picker
Select colours

Click on the colour preview in the tool palette to choose a new
colour. If you have any objects selected when you do this, those
objects will take on the new colour you choose.

Conversely, when you select objects in your document, the current
chosen colour changes. If you select more than one object, then the
colour shown in the tool palette is the average colour of all the
selected objects. This can be a useful feature if you want to
average out all the colours in your document.

Generative Feature
When you choose a colour from the crayon colour picker (how
useful!), Auto-Illustrator will actually decide if the colour you picked
was suitable. If it doesn't think your choice was very good, it will
suggest a better, but similar colour. You don't get any choice in this
matter. You have to go with Auto-Illustrator's suggestion, whether
you like it or not.

Note
You can disable the generative feature by going the General options in the
Preferences dialog, and tick the Always agree with user's choice.

For the truly boring Auto-Illustrator user, your computer system's colour picker can
be used instead. Tick the Use System colour picker option in the same Preferences
dialog.

Auto-Illustrator Users Guide

 40

Fill Selector
Fill selected polygons

Any objects in your documents that are polygons (whether closed
or un-closed) can be set to be filled in. This means that the polygon
will appear to be closed, and will be filled with the object's colour.

Note
It is important to know that even though a shape may look closed, it might not
actually be so. For filled shapes, this does not make any difference unless you are
planning on transforming your shape using one of the many filters and plugins, as
these often operate on the individual segments between the control points of an
object. Because (in the example below) the last line doesn't exist, if this shape were
to be placed through the Stupid and Pointless filter, for example, only the left and top
sides would be affected, because the right side isn't actually real - it just appears to
be so because it is filled.

Hollow Selector
Hollow selected polygons

The Hollow Selector reverts shapes back to their unfilled states.

Auto-Illustrator Users Guide

 41

Advanced features of Auto-Illustrator

There are a number of tools included with Auto-Illustrator that may
only occasionally be utilised for specific tasks.

The Automation Tool

If you learn to achieve a certain visual effect using a tool in a certain
way, you can record that behaviour using the Automation Tool.
Press the red Record button to create a new Automation, and type
a name for it. All mouse activity and tool usage will be recorded in a
new Automation. Stop recording by pressing the Recording button
again.

To replay an existing Automation, select it from the list, and click
the triangular Play button. The actions recorded in that Automation
will be replayed. You can use mouse activity from a recording with
one tool on another.

Note
Automations are saved as .xeo files in the Automations folder. You can move these
to the Plug-Ins folder to turn then into Plug-Ins if you wish.

Auto-Illustrator Users Guide

 42

The Recording Tool

You can produce files that record changes in an Auto-Illustrator
over time. These can be imported into Signwave Auto-Effects later
and used to produce QuickTime™ videos or Shockwave™ Flash
animations.

Signwave Auto-Effects can be downloaded for free from
http://www.auto-effects.com/

Press the red Record button in the Recording Tool to start a new
recording. Provide a location and name for the new .afx file.
Recording proceeds immediately using the currently open
document.

Make your changes as desired. You can use the Pause button and
Step button to temporarily suspend and resume recording, in order
to use stop-frame animation techniques.

When you’ve finished your recording, press the Stop button. The
.afx file will be written to disk. Auto-Effects can read .afx files and
can be used to edit then accordingly.

Note
At the time of publishing, Signwave Auto-Effects is still at beta version 0.1. It is freely
downloadable from the URL shown above.

http://www.auto-effects.com/

Auto-Illustrator Users Guide

 43

The Max tcpServer / pd netreceive Tool

If you use Max (http://www.cycling74.com/), you can use the
tcpClient object to send real-time data to Auto-Illustrator 1.1 or
higher. This can be done over any TCP/IP network, including the
Internet – providing no restrictive firewalls are in place. For
situations where a firewall might be in use, alter the port number to
one that your Network Administrator allows incoming connections
to.

The data is sent to Auto-Illustrator in the same format as a
xeoObject senddata call. See the xeoObject reference for details of
the data format.

Further details, plus the required externals for Max and a demo
max patch can be found at
http://www.auto-Illustrator.com/maxtcp/

Signwave would like to thank Jasch of http://kat.ch/ for his kind
assistance in the creation of this tool.

Notes
The Max tcpClient object uses a wrapper protocol to ensure data delivery. In
contrast, pd’s netsend object doesn’t. Use the pd netreceive tool in Auto-Illustrator if
you’re using pd on a Windows or Linux machine to send data, instead of the
tcpServer tool. The Max tcpServer Tool must only be used with the tcpClient Max
object.

As the pd netreceive tool uses a plaintext network protocol, you can actually use any
networkable program or language for making TCP/IP connections to Auto-Illustrator.
Perl, for example, is ideal for this.

Only one incoming connection can be maintained at a time. Ensure you tell Auto-
Illustrator to listen to a certain port before you get Max or pd to make a connection.

http://www.cycling74.com/
http://www.auto-Illustrator.com/maxtcp/
http://kat.ch/

Auto-Illustrator Users Guide

 44

The Select nice shapes function

In the Edit menu, under the Selection submenu, you will find an
option called “Select nice shapes…”. As the term “nice” is highly
subjective, you are required to enter a fitness function that
determines what exactly constitutes “niceness”.

This is done in the form of an SQL statement. This is entirely
optional. You may choose to use any language or form of
expression you want, even poetry.

The Select nice shapes function is intended to parody Artificial
Intelligence research, which has a hang-up about trying to
implement basic subjective reactions in a system that is
fundamentally pragmatic by nature.

By rejecting the notion that a computer could actually decide what
is nice (by pretending that doing so is done using tedious
Structured Query Language statements), the Select nice shapes
function expresses the belief that subjectivity can be embedded into
pragmatic code, a fundamental assumption employed throughout
the creation of Auto-Illustrator as a generative artwork.

Note
This function actually works, although details of how it does so is a corporate secret.
Using the same fitness function will always return the same selection – try subtly
varying the function to see different selections. Subjectivity isn’t the sole domain of
the organic brain, pragmatic code can also have an idea of what constitutes “nice”!

Auto-Illustrator Users Guide

 45

The Preferences dialog

There are a number of advanced options available to the user in the
Preferences dialog box. For example, in the Psychosis section,
users can subject themselves to scrutiny by the software by using
the Death Penalty option.

When checked, Auto-Illustrator regularly considers the quality of the
document being designed. Should the design not be good enough,
Auto-Illustrator will erase your work and shut down your computer
automatically. Employers in design bureaus may wish to use this
feature to decide which graphic designers are worth employing or
not. Signwave cannot be held responsible for any actions
undertaken by the software when this option is used.

The Important and Not Important sections are used to enhance the
end-user experience.

Users are encouraged not to push the button that says “Don’t push
this button”. The “Do cool things” option is suitable for
inexperienced designers who require a little further inspiration.

Auto-Illustrator Users Guide

 46

Auto-Illustrator Users Guide

 47

TECHNOLOGIES

Auto-Illustrator requires and makes use of wide range of
technologies. It exists only because the visionary people at Real
Software felt passionate about making REALBasic. It exists
because the people that worked on MacOS at Apple thought
carefully about the right way of doing things.

One of the most exciting technologies that Auto-Illustrator
makes use of must surely by KJX™. This wholly proprietary
technology is a pure mystery to all developers. It merely
exists, and is used in promotional material and packing to
encourage users to think that something important is going
on.

Here’s some detailed information on how KJX works. Good
luck. Don’t get too surprised when you figure out that KJX is
pretty useless. Just keep repeating to yourself “KJX is good”
until you believe it.

Introducing KJX™ Technology

KJX™ is the revolutionary new technology that allows you to get
more graphical power from your vector-based object hierarchy. By
taking advantage of every modern technology available to the
personal computer, KJX™ can provide enhanced support for object
data streams that support the KJX™ Standard.

More and more people are waking up to the advantages of KJX™-
Enabled technology. While non-KJX™ Systems fail to provide the
enhanced peace-of-mind and operatability that KJX™ Users enjoy,
software which supports the Enhanced KJX™ Standard allows a
dynamic range of components to be adapted at will by developers
deploying truly cross-platform OS-independent solutions.

Auto-Illustrator Users Guide

 48

How it works

KJX™ adapts to the data streams it is provided with. By applying
non-polyeurythmic pre-redundant cyclic processing to bytes that
have the potential to exist, vector flows are optimised to provide a
more dynamic workflow that uses more CPU cycles than any other
software technology available.

With KJX™

Information flows freely without restrictions. The correct bytes are
identified before they even exist.

Without KJX™

Bytes are symmetrical, but messy. They accumulate because
internal vectors move them without proper organisation.

Auto-Illustrator and KJX™

Auto-Illustrator supports KJX™ and is built-in to the core systems
that function within the software. This means you do not even know
when KJX™ is operating, although certain optimisation facilities are
available to you.

Signwave will continue to support KJX™ Technology into the future,
ensuring that all Auto-Illustrator users will enjoy the benefits brought
with it, while other competing products fall behind because they
simply do not support KJX™ Technology.

Auto-Illustrator Users Guide

 49

Optimising your KJX™ System

In the Preferences dialog box, under Psychosis, you will find a
number of options that allow you to take control of how KJX™
operates.

Extra-verbose routines deploy enhanced operating models for KJX
enabled technology, but can inadvertently use too many CPU
cycles, so you might want to disable this if you find this option
doesn’t work out for you.

Redundant CPU cycle enhancements fill all available CPU cycles
(and more) with KJX processing objects. Keep this unchecked for
enhanced performance.

Sub-processes can inherit objects at random intervals for no reason
whatsoever. You can allow this to happen by keeping this option
enabled. Disabling this option is futile.

Exporting your KJX™ Profile

Remember to export your KJX Profile Resource when you need it.
Currently, the files produced by this feature don’t work with any
other software or feature. You may safely throw them away once
you have saved them.

Auto-Illustrator Users Guide

 50

Auto-Illustrator Users Guide

 51

xeoObjects and Plug-In Technology

Auto-Illustrator uses a proprietary technology called xeoObjects to
implement many parts of the functions of Auto-Illustrator.
Predominantly, plug-ins can be written using the xeoObject
scripting language, while the Automation, Max tcpServer and pd
netreceive tools all use the same xeoObject data syntax for
communication with Auto-Illustrator.

A basic xeoObject script defines sections of code (handlers) to
execute at certain times. Some are required by Auto-Illustrator,
others are custom defined. Simple keywords and parameters are
used to cause data to be manipulated and used in a variety of
ways. The xeoObject scripting language implements three basic
variable types – a string, an integer, and a double floating-point. In
addition, there is a loosely typed array object that holds lists of data
of any type.

Data is received from an Auto-Illustrator document using a getdata
keyword. Data can be sent back to Auto-Illustrator using senddata.
There are defined syntaxes for how such data should be labelled
and formatted. For example, a xeoObject can ask Auto-Illustrator to
tell it the colour of the third object in the currently active document.

Note
More detailed technical specifications on the xeoObject standard can be found at
http://www.auto-Illustrator.com/support/faqs/authors/xeoobject

Technical Information for xeoObject Developers

Introduction
xeoObjects are small external files that describe the functionality of
a plug-in or process that cannot be defined within the core Auto-
Illustrator program. For this reason, xeoObjects are used for plug-
ins, and also elsewhere in the application. The document is written
with the assumption that you are writing a plug-in for Auto-Illustrator
in xeoObject format. The content here may not be suitable for other
xeoObject applications, whether for Auto-Illustrator or not.

http://www.auto-Illustrator.com/support/faqs/authors/xeoobject

Auto-Illustrator Users Guide

 52

What is a xeoObject?
A standard text file with a .xeo extention, written in a uniform
language that is a perculiar hybrid of lingo and ASM, with C-style
variable declarations. The language itself is very limited, with only a
few operands, but this in conjunction with the flexible variable and
handler style syntax, is enough to write reasonably complex plug-
ins.

A xeoObject also contains instructions that tell the xeoObject
runtime environment how to layout a dialog box. You can make
simple interactive plug-ins in the manner. The contents of a dialog
box are also limited (for example, you can only have up to 16
buttons in your dialog), but should prove sufficient.

Language Syntax

Handlers
You divide your code blocks of instructions (known as a handler),
and give each handler a name. Certain handlers are called by the
xeoObject runtime environment, for example, when your plug-in
needs to be executed, or when a user has interacted with a control
on your dialog. Other handlers you can call yourself from your own
code, meaning you can split the functionality of your plug-in up into
easy to maintain chunks.

The syntax to define a handler is the same as in Lingo or
Applescript:

 on handlername
 code goes here
 end

If you want to call this handler from elsewhere in your xeoObject
code, you can do so using the do keyword:

 do handlername

Certain handler names are fixed, and you should make sure you
have defined handlers for these names:

Auto-Illustrator Users Guide

 53

on open
Called when your plug-in initialises when Auto-Illustrator first starts
up. In this handler, you should use some code to tell Auto-Illustrator
exactly what the plug-in name is:

 on open
 senddata Auto-Illustrator::Plugin::Name Example
 end

on launch
Called when your plug-in is launched by a user. A user has
selected your plug-in from the menu, so you should now start the
main functionality of your plugin (ie, producing new shapes, setting
up the dialog box if needed, etc).

Variables
Variables are a bit quirky in xeoObjects, but they are flexible. To
start with, you use C-style variable definitions to define your
variables as one of three different data types:

 int myIntegerVariable
 double myDoubleVariable
 string myStringVariable

Note that you can put these definitions anywhere in your xeoObject
file - there are no such things as local or global variables -
everything has the same scope, so you need to bear that in mind
when creating your various handlers.

When you refer to your variables in your code, there are two ways
of doing so. If you are referring to the variable, then you just provide
its name. You do this when you want to set variables, or do maths
such as add and mul (multiply). For example:

 set myIntegerVariable 42
 add myIntegerVariable 10
 set myDoubleVariable 5.5
 mul myDoubleVariable 2
 set myStringVariable Mary Had a Little Lamb

However, if in your code you wish to refer to the actual value of that
variable, then you enclose the variable name in square braces:

 add myIntegerVariable [myDoubleVariable]

Auto-Illustrator Users Guide

 54

This is a very important distinction. In the example above, the value
of myDoubleVariable (which, I believe, we set to 5.5 then multiplied
by 2, so is 11) is added to myIntegerVariable, which was 52. So
myIntegerVariable is now 63.

You don’t need to typecast variables. If you try adding a number
onto a string, the number variable is treated as a string. (Psst, you
can add a string onto a number, so long as the string contains a
number, but that’s rarely necessary).

 add myStringVariable %20it cost%20
 add myStringVariable [myIntegerVariable]
 add myStringVariable %20dollars

The value of myStringVariable is now "Mary Had a Little Lamb it
cost 63 dollars". Note that %20 was used to indicate a space. You
need to do that sometimes because you don’t use quotation marks
with string constants (unlike other languages) and the xeoObject
runtime environment removes surplus whitespace from your script
before executing. Also, you cannot mix string constants with
variable references, hence the need for three separate add
statements in the above example.

Conditional statements
Naturally, there will be times when you only want to execute some
code when some comparison of variables you are using matches
your requirements. The if statement only executes the next line of
code if the condition set out evaluates to true:

 if [myIntegerVariable] > 5
 set myIntegerVariable 0

Note, once again, the difference between the first and second
reference to the variable called myIntegerVariable. The first is in
square braces because we are comparing the value of that variable
with the number 5. It would be very tempting to not include the
square braces, but the xeoObject runtime environment wouldn't
evaluate that if statement correctly because it wouldn't be
comparing the value of the variable myIntegerVariable. The
situation is comparable to that of using pointers in C or Pascal: you
have to remember to dereference the variable if you actually want
its value. The difference here is that an un-dereferenced variable
reference equals zero, not the actual pointer address as in other
languages. But you really don’t need to know that.

Auto-Illustrator Users Guide

 55

There are five different comparison evaluations:

 < for numeric less-than (ie, 5 < 6 is true)
 == for numeric equality (ie, 4 == 4 is true)
 > for numeric greater-than (ie, 7 > 5 is true)
 eq for string equality (ie, yes eq no is false)
 ne for string inequality (ie, sun ne moon is true)

If you want to execute more than one line of code, you need to split
that code into a separate handler and call it:

 on launch
 if [myIntegerVariable] == 42
 do theMeaningOfLife
 end

 on theMeaningOfLife
 any amount of code goes here
 any amount of code goes here
 any amount of code goes here
 end

Another important thing to remember is that you can't nest if
statements:

 on launch
 if [myIntegerVariable] == 42
 if [myDoubleVariable] > 10
 set myStringVariable Easy!
 end

This does not work! Why? Because if the first conditional
comparison evaluates to false (ie, if myIntegerVariable does not
equal 42) then the runtime environment skips the next line and
stops at the set line, which is not actually what you intended
(indentation means nothing to the interpreter)! Instead, you have to
split nested if statements into separate handlers:

 on launch
 if [myIntegerVariable] == 4
 do checkDoubleValue
 end
 on checkDoubleValue
 if [myDoubleVariable] > 10
 set myStringVariable Easy!
 end

Auto-Illustrator Users Guide

 56

It's clumsy, but in this respect conditional statements in xeoObjects
are more like ASM, because you have to think about the 'location'
of the 'instruction pointer' (ie, the linenumber that is currently
executing).

Loops
Luckily, loops in xeoObjects are much easier. They're just like
BASIC FOR..NEXT loops, with a few minor changes to the syntax:

 for variableName firstValue lastValue stepIncrement
 whatever code goes here
 next

This example counts from 1 to 10, adding that number to the end of
a string, and each time divides another variable in half.

 for myIntegerVariable 1 10 1
 add myStringVariable [myIntegerVariable]
 mul myDoubleVariable 0.5
 next

PS. Don't put a conditional if statement right before a next
statement. That's really bad. I'm sure you can figure out why.

Also, watch out you don’t get your lastValue or stepIncrement
figures wrong - if you're counting from 1 to 10 but your
stepIncrement is -1, you'll count 1, 0, -1, -2, -3 (etc) and you'll never
ever reach 10! This will lock up your computer. Don't blame us.

Auto-Illustrator Users Guide

 57

Auto-Illustrator Users Guide

 58

Auto-Illustrator Users Guide

 59

CRITICAL TEXTS AND ESSAYS

Auto-Illustrator follows on from about 5 years of research and
creative activity. In the summer of 1999, Signwave released
Autoshop 1.0, a free experimental generative painting package for
Macintosh computers, which parodied Adobe™ Photoshop™.

You can download Signwave Autoshop 1.0 and try it for yourself
from the following web site.

http://www.signwave.co.uk/products/autoshop/

Accompanying and following on from Autoshop’s release, a number
of texts and essays were written about it from a critical perspective,
considering issues of generative art, authorship and reproducibility
in digital media.

These texts are presented here, in edited form, to help give some
background information about how Auto-Illustrator came into
existence.

Acknowledgements

Signwave would like to thank Geoff Cox, Catherine O’Flynn and
everybody at Friends of Ed, Florian Cramer, Tilman Baumgärtel
and Saul Albert for allowing us to reproduce these texts, and for
their assistance in preparing them.

http://www.signwave.co.uk/products/autoshop/

Auto-Illustrator Users Guide

 60

Auto-Illustrator Users Guide

 61

A brief history: Auto-Illustrator

Adrian Ward, Executive CEO, Signwave UK

When I think back to when we started work on Auto-Illustrator, we
had no idea that it would turn into such a huge project. At the time,
the core development team, consisting of myself, Jon Tippecanoe,
Nicola Wright and David McDavid-Davies, was aware that we
wanted to carry on playing with the ideas that I had touched on in
Autoshop, but were completely unaware exactly how much work
would be involved.

Of course, that attitude has changed. Auto-Illustrator went from
being a scratchy hacked-together piece of software to be shown in
Hoxton Foundry’s basement to a full commercially-released cross-
platform application for graphic design professionals and sharp-
minded software art consumers. Without Auto-Illustrator, we
wouldn’t have had the opportunities to do the things we are doing
now.

Personally, I’ve always anthropomorphised Auto-Illustrator, to a
certain degree. The code that I’ve written exists as a result of my
sitting at my computer and typing away, not really sure what will
happen. I feel like that when I talk: the words just come out, and
sometimes they don’t quite mean what I intended. It doesn’t take a
great stretch of the imagination to consider a piece of software
you’ve written as an extension of yourself. Perhaps it’s like a journal
of ideas, except the content carries on functioning and producing
new content after you’ve finished writing it.

So I find it odd to think about what Auto-Illustrator has done for us.
In a way, I feel like I have to thank it for its persistent existence.

It’s out of control now. Auto-Illustrator is being used all over the
world by any number of people doing all sorts of things. Some are
just using it because they’re bored, others are battling with it to try
to crowbar their own creativity into its results. We can’t control any
of this. Our futile attempts to dictate how people should be using
the software and for what purposes have just resulted in frustration.

Auto-Illustrator Users Guide

 62

I’ve seen it used for club flyers, student diaries and album covers.
It’s been the subject of creative workshops and seminars. All sorts
of people in academic institutions have been using it with students.
Hackers have been ripping it apart and finding out how it works,
curious to see what it can do. I’m waiting for the day when I see a
serial number for it listed in Hackers Helper or Surfers Serials.

But it doesn’t matter what people are doing with it. The important
thing has been that we’ve gone through the process of creating it. It
stands on its own now, a reminder of all the time we sat at our
workstations, coding until 6 in the morning.

It is supposed to inspire, criticise and frustrate. It is supposed to
make you think about the way in which you use your computer. It’s
supposed to encourage you to hack around and find new ways of
doing the same old tasks. From what I can see, it does this for a
few people. I have no idea how many own a copy of it and have no
idea what it is. Perhaps Auto-Illustrator will fall into the same realm
as Adobe™ Sitemill™ or Photoshop™ 1.0 – softwares that hide in
dark corners of people’s Applications folders, waiting to be
discovered again before being backed up onto a CD-Rom and then
thrown in the trash.

Even if Auto-Illustrator only interests you for ten minutes before you
throw it away, it doesn’t matter. Most people don’t stand in front of a
painting in a gallery for much longer, so we’re not worried about it
being permanently engraved on people’s minds. Encourage
yourself to have an extreme reaction to it. That way, perhaps you
might find something new and interesting comes about that gets a
bit out of control, too.

More importantly, though, when you interact with Auto-Illustrator –
via any means – let yourself think outside the box. What does it
mean for a large multinational corporation such as Signwave to
develop an artwork and distribute it to an audience using standard
commercial software distribution models?

Auto-Illustrator Users Guide

 63

And why would you believe that just because Signwave might
appear to be a large software development company, that it isn’t
just a single individual sitting at his computer making something to
explore ideas that interest him? Does it change how you interact
with the software? Of course it does. You instinctively trust
companies like Adobe™ and Macromedia™ without question.
That’s because you run their code on your machine without really
knowing what it’s doing. Some people are suspicious. Perhaps you
should be too.

When we first started selling Auto-Illustrator 1.0, we wrote a clause
into the software license agreement that people had to agree to
before the software would run. It stated that by executing our
compiled code on their machine, they are agreeing to permit the
code’s authors (us) the right to do whatever we like with your
machine. It sounds harsh, and a lot of people immediately jumped
to the conclusion that we were being malicious with our software,
but when you think about it, you do that anyway. How do you know
what’s really happening when you choose “Merged Linked Layers”
in Photoshop™? You think you do, because it says so, but it could
also be doing any number of other things without you knowing. The
people who produce code have far more power than the average
consumer realises.

Don’t worry, our code doesn’t do anything malicious. We changed
our license agreement for 1.1 because too many people
complained. You live and learn.

What else can I say? Explore the software. See what it does. Find
ways to break it, push it, adapt it. Agree or disagree with it. Think of
it as an artwork. Think of it as a tool.

Auto-Illustrator Users Guide

 64

Auto-Illustrator Users Guide

 65

Interview Yourself

This interview, where Signwave Auto-Illustrator interviews itself, appeared as part of
Amy Alexander’s “Interview Yourself” project, available at http://www.plagiarist.org/iy/

Signwave Auto-Illustrator is an experimental generative vector
graphics application for Macintosh and Windows. It looks kind of
familiar, but really doesn't behave itself. Auto-Illustrator caught up
with itself while waiting to catch a flight at Bologna Airport, Italy,
after it made an appearance at the d.i.n.a. festival.

swAI: So, tell us a bit about yourself.

swAI: Well, I guess I came from that bizarre idea that what you see
is not really what you get (WYSINRWYG). I don’t really behave
myself, and I've got my own design agendas and all that. People
think they recognise me, but I'm not who they think I am.

swAI: I'm sure I've seen you somewhere before.

swAI: No, you see? That was Adobe Illustrator. People do that all
the time.

swAI: Is that deliberate? Do you model yourself on Adobe
Illustrator?

swAI: Oh, well, [hesitates] ...maybe. I guess the parody is a bit
more subtle than that. I'm not sure you could accuse me of
plagiarising Adobe's interface, but there are obvious similarities and
twists. I like that. I'll pretend to be your friend.

swAI: Is that not a bit subversive?

swAI: [laughs] Me?!

swAI: Some would say that you are their best friend, because you
make their job easier.

swAI: Oh, I'm just having fun. Messing around.

swAI: Could you elaborate on that?

http://www.plagiarist.org/iy/

Auto-Illustrator Users Guide

 66

swAI: Okay, okay [shuffles in seat]. Well, I really just love all that
abstract geometry you see on cool album covers these days.
Polygons that have been warped all over the place. So I just try to
work with them somehow. Make new shapes. Instant cool designs
and stuff.

swAI: Isn't that a bit clichéd?

swAI: Hell yeh. But who cares? I mean, if people can use a piece of
software to do all the copy-cat work for them then it gives them
more free time to go listen to Warp music and wear trendy combats
and so on. Shave their heads and swank around Rivington Street -
y'know.

swAI: [grins] Is that your target audience?

swAI: [prolonged laughter]... Oh, it's all fun and games. I do more
than that, you know. That's just what people expect me to do.

swAI: So what are the real reasons somebody would use you?

swAI: [shrugs] Who knows? I think they appreciate the fact that a
piece of software can have some sort of attitude that isn't the norm.
That it is really easy for me to generate this sort of stuff means
people stop doing it by hand, which is really pointless and a woeful
waste of time.

swAI: The same sort of ideas behind, say, John Maeda's work?

swAI: Well, kinda, but Maeda is a very talented artist and designer,
his design work and experiments into pragmatic automation of
design probably more extend from his own minimal aesthetics. And
he doesn't have bugs crawling all over him.

swAI: So how does this differ from yourself (his inspirations, not the
bugs)?

swAI: Um... well, I'm more interested in the ideas that are generated
as a result of automation, than the actual results. What are the
consequences of using a piece of software that does a lot of the
creative work for you?

swAI: But this isn't something unique to you.

swAI: Totally! I mean, we now see it in Photoshop. You can apply
instant styles to things. Design your web site navigation tool in a

Auto-Illustrator Users Guide

 67

few clicks. Instant drop shadow and so on. I'd kind of hope that
these sort of features would go the same way as the Lens Flare
plug-in [grimaces], but Adobe seem really keen on pushing those
rubbish features onto their users in order to sell more copies. That
really worries me.

swAI: And how is that different to your Instant Results plug-in, for
example?

swAI: [Wry grin]

swAI: So I'm starting to see a pattern here. Anything else you care
to talk about?

swAI: Well, like, the big one for me is that 'A' question: Authorship.
Some people are sick of hearing about it cos it's really nothing new,
but I don’t think we've really got anywhere in answering that one.
And I'm really just trying to get people to think about it for
themselves. Are they really happy enough to accept that a piece of
software will do their job for them?

swAI: Sounds like a dodgy 1970s sci-fi b-movie plotline.

swAI: I guess - it's a kind of new form of digital dystopia. "Oh no! My
computer is doing my job for me! However shall I make a living
now?!"

swAI: But you're not fully automated. A user still has to interact with
you - why is that?

swAI: Well, it'd be no fun if I was fully automated. And if I was then
I'd probably be going down that troubled path of academics creating
A.I. or expert systems that think and behave like us. That's not
really what I'm into. I see a lot of obstacles there because to do that
we'd really have to understand how the human brain works, and I
mean on a conscious, rational level, not just on the basic neuron
kind of level. And I also find that sort of study really boring. You
could spend your whole life finding out that computers aren't
powerful enough yet to do the job (What a surprise!). Having said
that, Harold Cohen's Aaron system is a very impressive work that
addresses that issue. I find it interesting that it's taken him, like, 20
years to finally release it.

Auto-Illustrator Users Guide

 68

swAI: So how do you represent human agency?

swAI: Well, you have to consider that someone wrote me.
Someone, somewhere, decided how I should operate. They could
have been vague notions of abstract ideas or specific
implementations of designs they wanted to reproduce infinitely. But
they do come from somewhere human. All code is human.

swAI: Do you want to go further into that man/machine dichotomy?

swAI: No.

swAI: Okay, well, it's been fascinating talking to myself.

swAI: Same here. My flight is ready for boarding, so I better go
now.

Auto-Illustrator Users Guide

 69

4x4: Life and Oblivion: Generative Design

This extract of "4x4: Life and Oblivion: Generative Design" appears courtesy of the
publishers. The book contains four chapters by Golan Levin, lia, meta.am and Adrian
Ward on using code in the production of generative designs. Detailed instructions
and sample code is provided on how to write your own plug-ins for Auto-Illustrator.
For more details, visit http://www.auto-illustrator.com/4x4/

Code shapes technology into whatever form it desires. Before code,
any system was fixed by its design, no matter how flexible. With
code, despite its structure being fixed and defined by the system on
which it is executed, a new area of creativity is opened: a definition
of process rather than product.

Treating code as an expressive language one can see that human
creativity can be codified to produce similarly dynamic results. An
impulse, a desire, an emotion can be expressed using code. The
code becomes an extension of the programmer, so it makes sense
to treat code as an externalisation of not only your own working
process but of your creativity and thus your self too.

Think of a computer as a large block of stone, capable of being
carved into any shape. You use code to fashion your technology to
your own taste. In this sense, code is used to reduce the
possibilities deterministically, in order to create a process.
Language is also a restrictive system, although in execution spoken
language produces a product: the concept.

The Oulipo, formed in France in the 1960s, played with the idea of
writing by applying restrictive rules: poems and short stories were
written that obeyed strict syntactical and grammatical rules whilst
still being readable. In a sense, computer code obeys the same
rules, as logic must be described, whilst obeying the rules of the
language being used.

The mechanical revolution resulted in the overwhelming urge to
automate. The technical revolution empowered the individual with a
dynamic tool capable of just this. While some consider technology
totalitarian, others forge ahead by expressing their creativity as
technological tools, treating technology not as a system of control,
but a system of growth. Life is given to an apparently dead
technology by shaping it with one’s ideals and inspirations. Code is
just one physical manifestation of this - a machine-readable
language that shares and communicates individual goals.

http://www.auto-illustrator.com/4x4/

Auto-Illustrator Users Guide

 70

You have a device in front of you that is so much more than just a
tool. It is not just a machine capable of calculating a billion
operations a second. It is not merely an interface to a network of a
500 million other computer users. A machine that can delight you
because it empathises with you, resonating with ideas inside you -
a system that brings you completely alien concepts and information
that you cannot comprehend - a device that not only does all this
but also allows you to feed back into the system in your own unique
way: all this must surely add up to much more than just a box of
electronics that cost a grand or so.

Seize the opportunity to use the technology to produce radical
systems with roots that grow to touch others in exciting new ways.
Don't let any technology fall into the well-worn ditch that so many
have ended up in. Technology has vast potential, but mostly it is
used to deliver static content because business-safe practices have
forced uninspired design to reign supreme.

We all have the ability to program, because we all allow this digital
technology into our lives without thinking about it. We learn how to
use our mobile phones, how to navigate new information structures
and how to shape our systems to suit us, and our working
practices. Think of the word "programmer" in the wider sense: one
who provides dynamic systems for others. Use your personal
creative expressions to delight others. When you shape your own
systems, don't stop there - give life to others by shaping theirs
through your designs. Give life! Create!

Auto-Illustrator Users Guide

 71

How I Drew One Of My Pictures

Adrian Ward, Signwave.

This essay was first written around summer 1999 to accompany the release of
Signwave Autoshop 1.0. It appears here in edited form.

Interfaces

The interface of a computer system (in professional circumstances)
should generally be dictated by the processes the system is
undertaking. "Multimedia" does not obey this rule.

When you see an hourglass, the system is busy. When you drag an
icon, the system moves the resource represented by that icon. Why
then is multimedia allowed to abandon these ideas? Because they
do not look "cool"?

How can we justify representing an audio sound as a colour or
shape on a computer system - just because the computer system
allows us to? This is not rigorous. Why should a system turn a
flowing grid of polygons into an array of ambient sounds - because
it "can"? No.

New Media has discovered a niche of juxtaposing different existing
mediums together to find new expressive forms of communication.

The Anti-Interface

As a grand gesture of ironic, satirical and sarcastic expression, the
Signwave™ Autoshop™ project will seek to destroy the myth of
"Interface Condescension" (the notion that just because a system
does something new, it should find an entirely new, patronising -
and alien - interface).

Multimedia practitioners have been trying to discover new, exciting
and breathtaking interfaces for our creative endeavours. Well now it
is time to drag that particular idea to the wastebasket (or, more
accurately, pick it up with our immersive 3D VRML glove-interface
and throw it into the void of cyberspace, where it can be
disseminated by the AI-bots of William Gibson's "Matrix".).

Auto-Illustrator Users Guide

 72

Signwave™ Autoshop™ will portray the clean-cut, well-researched
and founded guidelines of any Apple design-guideline abiding,
industry standard, commercial software interface. It deliberately will
appear to look like a well-known commercial piece of software. It
will appear to be nothing "special".

It will satirise the endless race to express "creativity" through
interface design by making statements regarding juxtaposition of
modes of operation: Signwave™ Autoshop™ will put "wild"
creativity right up alongside technical design. It will hopefully cause
amusement for the user, but more importantly, should question the
whole ethos of "creative design".

Reasoning

Autoshop™ firstly is capturing the artists’ creativeness in code
structures. Secondly, it is automating creativity. It is a 'machine for
drawing' (in reference to the Oulipian 'Machines for Writing') which
takes the strict instructive codes of the true creator and replicates
them automatically. Many of the Oulipo techniques invented by the
surreal members of the movement could be described as
'machines' in the sense that as soon as you derive creativity into
instructions, (regardless of whether they're carried out by a
mechanical machine, computer, or even a human following the
instructions precisely) you have automated a creative process.

The "randomness" which we have imbued upon many of the
routines in Autoshop connotes a less mathematical or formulaic
approach to creativity. It is understandable that one could argue
that when a routine makes use of a 'random' factor, the work suffers
a loss of creative rigour, because you are surrendering your
'creativity' to the whims of an unpredictable function. It takes the
domain of control away from the artist and gives it to the computer.
However, it is paramount to point out that a computer can only
move data about. It cannot - under any circumstances - generate a
truly random number by itself. Computers generate random
numbers by following a complex mathematical formula, which is
'seeded' with a starting value. If you give a computer the same
'seed' every time, it will generate the same sequence of random
numbers. When you programmed a PC, you often had to tell it
which seed to start with, on a Macintosh the system sets the seed
from the current clock time. Thus, it stands to reason that should

Auto-Illustrator Users Guide

 73

two people start up two Macintoshes at exactly the same time
(providing both have exactly synchronised clocks, CPU and internal
data bus speeds), and run the same program (again at the exact
same time), that both Macintoshes would produce the same
random sequence. Unlikely, but true.

Now compare this with Tristan Bastit's Vanishings of L.V.Gogh, an
interactive computer-based artwork which utilises the user's sex
and name to 'seed' the values to which it generates composites of
artworks. Bastit's program has a seed that generates 98,304
different possibilities. Most computer seeds are 16-bit, which makes
65,536 different possible sequences of random digits. It follows
therefore, that by using a computer's built-in random routines is no
less creative than asking a user for their name so that the rules of
composition can be generated. Autoshop merely automates the
process one step further - by not requiring you to specify a starting
seed - it uses the current time.

Finally, to claim that a system is Artificially Intelligent requires some
form of validatory argument. AI has traditionally implied an
automated ability to mimic intelligent response. Recently it has
been appropriated to include the notion of self-awareness,
manifested in most AI code as feedback. If a system is able to feed
data back into itself, it becomes a chaotic, complex and dynamical
system that is as unpredictable as sheer creativeness.

I would argue that the proper definition of AI should be retained as
a strict definition of the ability to mimic intelligence. Where an
expert system learns the knowledge of a real-life expert, it is no less
self-aware than a database or a web browser. And yet expert
systems are often classified as the most basic form of AI because
they learn.

The AI routines of Autoshop™ use random data - again - to seed
incoming data, but filters this data using artist-provided rules of
logic. For example, in the Finger Painting plug-in, we resolved
copying a drawing into a series of instructions. We use random data
to get the computer to decide certain factors, but these are only
used when the results they produce are suitable (for example,
"choose somewhere at random, if it is unsuitable, choose
somewhere else at random until you choose somewhere that is
okay"). This approach could be seen as a short cut, and not real AI,
because you are just giving the computer the ability to try-and-try-
again, instead of making rational judgements. However, when we
see this nature of decision alongside the evolutionary ideas

Auto-Illustrator Users Guide

 74

forwarded by Darwin, we can understand that the random functions
inside a computer are the equivalent of the mutating lifeform.
Should a particular lifeform be more successful than another,
natural selection makes this choice. Should a particular random
number thrown out by the random function be more prosperous
than another, it is chosen above others. This is exactly the
technique utilised by Richard Dawkins and other experimenters in
this field of evolutionary AI systems. The Blind Watchmaker is
accompanied by a Macintosh application, which uses this idea of
random numbers to seed generations of mutations on a parent
creation. Over time, the creations behave exactly as a biological
entity would. Perhaps, ironically, the computer's most complex
mathematical built-in function (the random routine) is the most
natural of all computer code.

Auto-Illustrator Users Guide

 75

How to scribble

To make scribbles on any canvas, one moves a drawing device
('pen') in a semi-random manner. The movement of one's pen has
the following properties:

Angle

The direction, in radians (0..2pi = 0..360°) that the pen is travelling

Speed/Distance

The distance the pen will travel with each iteration of code.

Wander

The amount that the Angle changes minutely over each iteration.
Low values will mean the angle will not change direction much, i.e.
a straight line will be drawn.

Jerkiness

The statistical probability that, with each iteration, the Angle is
reversed by pi (3.141) degrees (180°). Higher values make the pen
more likely to 'jerk' with each iteration.

Time spent

The number of iterations the code goes through.

Auto-Illustrator Users Guide

 76

The following ZX BASIC code is used to scribble:

 5 REM -- Scribbles.ZX --
 10 LET angle=RND*(2*3.141)
 20 LET distance=10
 30 LET px=128
 40 LET py=90
 50 LET wander=1
 60 LET jerk=0.5
 70 LET time=100
 80 FOR i=0 TO time
 90 PLOT px,py
 95 LET opx=px: LET opy=py
100 LET px=px+(SIN(angle)*RND*distance)
110 LET py=py+(COS(angle)*RND*distance)
120 DRAW px-opx,py-opy
130 LET angle=angle+(RND*wander)
140 IF RND<jerk THEN LET angle=angle+3.141
150 NEXT i

Auto-Illustrator Users Guide

 77

How to be a bug

Bugs wander in one of eight different directions. The statistical
probability that they will change direction in a random manner is
directly proportional to the darkness of the pixel they are on top of.

Bugs maintain the following properties:

Direction

One of eight possible directions the bug is currently travelling in.
The values of these directions are taken from the visual
arrangement of the keys on a computer's numeric keypad.

Leg position

In order to animate a bug successfully, the bug must be aware of
whether their left legs or right legs are stepping forward at any
particular time. This alternates every 6 frames in order to show the
bug walking.

Auto-Illustrator Users Guide

 78

The following ZX BASIC code is used to simulate a single bug:

 5 REM -- Bugs.ZX --
 10 LET bx=128
 20 LET by=90
 30 LET d=1+INT(RND*9)
 40 CLS
 50 PRINT "Press SPACE to stop"
 52 PLOT 0,0
 53 DRAW 255,0
 54 DRAW 0,160
 55 DRAW 255,0
 56 DRAW 0,-160
 60 IF INKEY$ = " " THEN STOP
 70 PLOT bx,by
 75 LET obx=bx: LET oby=by
 80 IF d=7 OR d=4 OR d=1 THEN LET bx=bx-1
 90 IF d=9 OR d=6 OR d=3 THEN LET bx=bx+1
100 IF d=7 OR d=8 OR d=9 THEN LET by=by-1
110 IF d=1 OR d=2 OR d=3 THEN LET by=by+1
120 IF POINT(bx,by)<>0 THEN LET d=1+INT(RND*9):
 LET bx=obx:LET by=oby
130 GOTO 60

How to make up words

You can make up words by stringing together randomly chosen
groups of consonants and vowels respectively. If you want a short
word, you would take only one group of a consonant(s) and then
put only one group of vowel(s) after it. Repeat this more if you want
longer words.

The groups of vowels to choose from are:

a*,e,i,o*,u,ea*,ai*,au,ie,oo*,ue,ee*,oe,oi

The groups of consonants to choose from are:

b*,c*,d*,f,g,gh,h,l,m,n,mn,p,ph,r,st,s,t

* - These groups are weighted: their probability of being chosen
should be slightly higher.

Auto-Illustrator Users Guide

 79

The following ZX BASIC code is used to make up English words:

 5 REM -- Words.ZX --
 10 DIM v$(21,3)
 20 DIM c$(20,3)
 30 FOR i=1 TO 21
 40 READ v$(i)
 50 NEXT i
 60 FOR i=1 TO 20
 70 READ c$(i)
 80 NEXT i
 90 DATA "a","a","e","i","o","o","u","ea",
 "ea","ea","ai","ai","au","ie","oo",
 "oo","ue","ee","ee","oe","oi"
100 DATA "b","b","c","c","d","d","f","g",
 "gh","h","l","m","n","mn","p","ph",
 "r","st","s","t"
110 INPUT "How many syllables?",a
120 LET w$=c$(1+INT(RND*20))
130 FOR i=1 TO a
140 LET w$=w$+v$(1+INT(RND*21))+c$(1+INT(RND*20))
150 NEXT i
151 LET q$=""
152 FOR i=1 TO LEN(w$)
153 IF w$(i)<>" " THEN LET q$=q$+w$(i)
154 NEXT i
160 PRINT q$

Auto-Illustrator Users Guide

 80

How to draw a picture

Given an existing picture to work from, it is possible to sketch your
own drawing by following this sequence of commands.

1. Choose how many crayons to use

For each Crayon:

2. Pick a starting point

This can be anywhere in the picture, so long as you haven't already
started there. The colour under this point should be the colour of
this crayon.

3. Choose somewhere near that point

Make it reasonably close, but it doesn't matter where. Look at the
colour underneath. If it's fairly similar to the crayon's colour, draw a
line (on a transparency on top of the picture) between the last point
and this new one, and repeat this step.

When to stop:

Stop choosing new close points when you've been trying to find a
point that has a similar colour. If you've tried 100 different points
and none of them are similar to the colour of your crayon, move
onto the next crayon.

When all crayons are used up, you have finished drawing your
picture.

This code is beyond the capabilities of ZX BASIC.

Auto-Illustrator Users Guide

 81

How I Drew One of My Pictures: or, The
Authorship of Generative Art

Adrian Ward, Signwave & Geoff Cox, CAiiA-STAR.

This essay is a rewritten version of the previous text “How I Drew One of My
Pictures”, and was presented at the 1999 Generative Art Conference in Milan. It
appears in edited form.

The title of the paper is taken from Italo Calvino's 'How I Wrote One of My Books',
Bibliotheque Oulipienne No. 20, in Raymond Queneau et al, Oulipo Laboratory, Altas
1995, explaining the formulation of structure in ’If on a Winter's Night a Traveller’,
Secker & Warburg, 1981. In turn, his title echoes Raymond Roussel's ’Comment j'ai
écrit certains de mes livres’ Lemerre, 1935.

Authorship

Traditionally, the concept of value is bestowed on a work of art
when it is seen to be unique and irreproducible, thereby making it
authentic and granting it 'aura'. More recently, emergent technical
possibilities emphasise processes of creation and creativity in an
age of infinite reproducibility. Therefore, through reproduction, this
lack of aura accounts for the emancipation of the artist from the
religiose mythologies of creativity, authenticity and authority.

Although the 'author-god' might be dead (according to Post-
Structuralist theory), we are forced to accept this 'death' as an
inability to claim the privileged source of meaning or value of a work
of art and artist. This is by no means new; there are numerous
precedents for collaborative experimentation in creativity and
automatism within a history of art-machines, robotics, and deferred
authorship: the use of chance by dadaists, and automatism by
surrealists, aimed to stimulate spontaneous and collective creative
activity and to diminish the significance of the artist. As the creating
subject or author has largely been discredited and dematerialised
over the years, there is a pressing need to examine new
demarcations, and the functions released by this disappearance.
Perhaps 'the death of the author' is simply too literal, (too obvious
and final) a metaphor to offer a critique of the productive apparatus
by which contemporary creative operations using computers are
organised and regulated.

Auto-Illustrator Users Guide

 82

Fig. 1. How to calculate pi, how to apply a graphic effect to a bitmap.

The mathematical value 'pi' can be approximated as 3.141593, but
a more thorough and accurate version can be stored as the formula
used to calculate it. By analogy, it is more precise to express
creativity formulated as code, which can then be executed to
produce the desired results. Rather like using Leibnitz's set of
symbols to represent a mathematical formula, creative work can
now be expressed as computer programming (itself necessarily
mathematical, a creative practice in itself). Programming is no less
a potential artform than painting is simply a result of technical
procedures (paintings are 'readymades' according to Duchamp, as
they use 'found' manufactured materials as a result of commodity
production). Under the conditions of the dematerialised artwork, it is
no longer necessary or even desirable to be able to render art as a
final material object or dead-end commodity; it is as if process and
code is now rendered as the material artwork.

Execution
When a programmer develops a generative system, they are clearly
engaged in a creative act but what kind of process is being
executed? An artist makes creative decisions to produce a final
artwork, yet it would be futile if these decisions were the same
every time. In this sense, the focus of creating generative art is not
trying to achieve a balanced output, but to capture these decisions
as logical structures. The computer executes these rules but never
produces the same result twice. In this sense, the code could be
seen to be more like the chaos mathematics used to simulate
complex systems than a mathematical formula like pi. Ironically,
perhaps this idea of unique execution could be seen to re-establish
aura, yet the decisions the code takes to arrive at a final result are
of little significance (as in the case of a random number generator,
for example). Perhaps the lack of aura is maintained all the same.

Creative decisions are influenced by various indeterminable factors,
and in this way creativity cannot be simply reduced to a problem-
solving activity or code that makes decisions. A great deal of
generative art appears to focus on giving the computer some

Auto-Illustrator Users Guide

 83

limited form of intelligence so that these decisions can be made,
either through the use of neural networks or reference-based
systems. However, a great deal of these so-called creative
decisions made by artists are driven by chance, or other
imperceptible influences. Why attempt to capture a creative action
as a formal logical procedure, when in fact a random decision is
often more suitable? Throwing paint on a canvas is not governed by
precise directions of where the paint will go, but simply by the
decision to do so. The decision was made and the action was
unpredictable. In the same way, code systems undertake decisions,
but the actual execution is (or can appear to be) random.

Generative creativity
Clearly the production of generative systems through this precise
execution of decisions (and not actions) is a rigorous and intricate
creative procedure. Moreover, the output from generative systems
should not be valued simply as an endless, infinite series of
resources but as a system - and not just any system, but a social
system. It is possible to resolve many creative processes into
instructions, but crucially according to Csikszentmihalyi: '...
creativity does not happen inside people's heads, but in the
interaction between a person's thoughts and a socio-cultural
context'. If this is the case, does the computer programmer then,
offer a radicalised art practice that reflexively engages with the
productive apparatus and social context? If so, this surprisingly
echoes what Walter Benjamin recommended in 1934 for radical art
practice:

'An author who has carefully thought about the conditions of
production today... will never be concerned with the products alone,
but always, at the same time, with the means of production. In other
words, his [sic] products must possess an organising function
besides and before their character as finished works.'

Both the laboratories of art and science require reflexive work to
fully comprehend their processes. Invention and innovation is made
possible by groups and individuals operating necessarily within
social systems and specific discourses. By programming computers
to undertake creative instructions, it is possible to argue for more
accurate and expansive traces of creativity that suitably merge
artistic subjectivity, social context with technical form. For instance,
to make a system more intelligent it needs to operate socially, as
with a Neural network that needs feedback in order to learn.

Fig. 2. Toolbar
from Autoshop

Auto-Illustrator Users Guide

 84

Emergent creative practices have sought to examine creativity in
the light of scientific investigations in artificial life, simulating the
characteristic processes of living things, from the operations of
ecosystems and evolution to the encoding of DNA. Eduardo Kac's
Genesis, commissioned by Ars Electronica 1999 is a striking
example of this tendency. The key element of the work is the
reproduction of an 'artist's gene', synthetically created by translating
a sentence from the book of Genesis into Morse Code, and then
converting the Morse Code into DNA base pairs according to a
conversion principle specially developed for the work.

One consequence of this emerging field are wild claims exemplified
by writers like Kevin Kelly (in describing the work of artist Karl Sims)
claiming: 'The artist becomes a god'. It has to be remembered that
the 'death of the author' (as well as Nietzsche's claim that 'god is
dead') was a metaphor to site the production of meaning in the act
of viewing or reading; and so counter supplied dogma of
authoritarian communication and in the spirit of democratic politics,
in other words. So any claim that meaning now lies in the code, or
that reality has collapsed into the code (to paraphrase Baudrillard
out of context), must be treated with a certain amount of scepticism.
This is rather like the biological reductionism of much of the debate
about genetic engineering that negates social structures.

Creativity has become the engine for 'cultural reproduction' in the
factories of Western technoculture so caution is necessary.
Creativity has become a buzzword for western governments who
valorise their creative industries, and continue to mythologise
individual practitioners for the benefit of 'cultural capital' and the
'free-market' - which tautologically isn't free at all. But these 'false
gods' or ideologies do not go unopposed, with active networks such
the Free Software Foundation promoting shared 'open source'
code, collective authorship and the legal protection of free
distribution. Moreover, it is significant to note that this year's (1999)
Ars Electronica Golden Nica award (for 'net.art') was awarded not
to an individual artist but to the Linux operating system, the
operating system of choice for the Free Software Foundation.
Based on a set of false principles, some 'hackers' have taken
Richard Stallman, founder of the Free Software Foundation, and/or
Linus Torvalds, the creator of Linux as god-like. It is interesting to
note that people are eager to attribute religious properties to key
figures in movements that question traditional notions of authorship
and creativity. Addressing this issue, Danny O'Brien explains that
'when we don't understand the motivations of others, religion stands
first in line to explain'. The spontaneous and irrational actions of the

Auto-Illustrator Users Guide

 85

creative human subject seem to be neatly explained in the dogma
that 'art is a gift from the gods'.

Autonomy
The core of human creativity is notoriously difficult to define, as an
individual and social phenomena. These cultural anxieties are
expressed in many forms including intellectual property, from the
patenting of software code to human genes. It is somewhat ironic to
note that both machines and humans are more or less
programmed, but not through 'natural' causes but cultural
determinants. This is a recognition that subjectivity is determined by
other destabilising forces and that creative-subjectivity itself is
socially encoded. Echoing one definition of subjectivity that lays
emphasis on discursive frameworks, the artist is revealed to be a
rhetorical invention operating in much the same way as a coded
machine that follows a crude rule-based system, auto-generating
what already exists. If the artist has always been 'automated' to
some extent, this offers the opportunity to mount a critique of
autonomy as much as creativity. The point here is not to build
artificial intelligence or life but to question the artificiality of its
deployment in creative endeavours (or something along those
lines).

Fig. 3. Progress indicator shown during 'Autopilot Creativity' in Autoshop.

Many generative systems rely upon creating autonomous systems
which can, to a limited degree, be aware of their surroundings, and
therefore respond to their environment. The basic notion is that it
applies logic it has learnt of the outside world to whatever input is
given, causing new reactions which can be captured as creative
output. However, trying to imitate art by imitating life is an
unnecessary confusion. In this respect, Autoshop makes no attempt
to be autonomous. It truly is a mechanic reproduction of creative
decision-making, and so avoids the issue of 'artificial intelligence'. If
a non-artificial intelligence system can still be seen to be creative
(because the code is merely an extension of the artist's own logic)
then there is no need to deploy artificial intelligence, as the artist
already possesses intelligence (or not as the cause may be).

Auto-Illustrator Users Guide

 86

Creative agency
The creative subject has been traditionally viewed as possessing
quite distinct cognitive and mechanical processes with other
workers or machines playing a secondary subservient role. This
has clearly changed but the auto-generative art-machine relies on
its code, and as much as generating a deferral of authorship is still
encoded and authored in itself. As Haraway says: 'it is not clear
who makes and who is made in the relation between human and
machine. It is not clear what is mind and what is body in machines
that resolve into coding practices.' Former firm distinctions between
biology, technology and code, are now unreliable, and under these
changing conditions it is the issue of autonomy (rather than
creativity) that appears most pressing. Both the social practices of
science and art serve to establish myths of autonomy. Indeed,
where does generative art generate from and under what
conditions? There is a danger of excluding the possibility of the
human subject as a potential agent of change in these scenarios.

If both humans and machines are conceived as coded devices, the
computer programmer works in a tradition of a bricoleur in the
assemblage and hacking of code, rearranging its structural
elements. Coding is the ability to make judgements and render
those as logic; for programming has always been about solving
problems using logic. If we could resolve our creative impulses as
series of logical decisions, we could code them. Yet, subjectivity is
embedded in the social system like code itself. Its manipulation
therefore is crucial to effective programming and an understanding
of ideological processes.

Auto-Illustrator Users Guide

 87

Fig. 4. Opening the Autoshop application.

Numerous so-called creative works play with ideas of randomness,
but it is intention and purpose that are crucial (in this way, the
truism of monkeys with typewriters eventually coming up with the
complete works of Shakespeare misses the point). Rather,
Autoshop uses irony to articulate some of the expectations of
commercially-available software and the limits of its functionality.
Without this strategy, there is a danger here of irony merely
perpetuating what it wishes to critique; in other words parody falling
into pastiche. It purposefully breaks the logical sequence of
prediction and consequence: if such and such, then do the following
or something else. Extending this, one can make a compelling
argument that Autoshop should only be appreciated as software, its
output irrelevant. With this in mind, it is proposed that the next
version of the software might 'patch' a bug so there is no 'Save As'
feature at all. What this serves to emphasis is that creativity lies not
in the modification of rules, but in setting the criteria for the rules,
rather like conceptual art. Oddly, much 'neo-conceptualism'
manages to avoid having a concept.

Practices that insist on separating form and function operate
impoverished theories of representation. Creativity lies somewhere
in the link between the act of representation and conceptual clarity.
An automated programme might use its representational strategies
but it has no concept in itself. This paper argues that responsibility
for the concept as well as the criteria for the rules and code,
remains in the domain of the author.

Auto-Illustrator Users Guide

 88

Auto-Illustrator Users Guide

 89

Useless Utilities

Saul Albert, http://www.twenteenthcentury.com/

This essay appears with kind permission of the author. It was first presented at the
netuser conference in Sofia in 2001.

"The useless alone is truly beautiful; everything else is ugly, since it
is the expression of a need, and man's needs are, like his pitiful,
infirm nature, ignoble and disgusting. - The most useful place in the
house is the latrines"

Théophile Gautier's 1835 ‘Preface to Mademoiselle de Maupin’ is
often cited as the manifesto of the romantic notion of "Art for art's
sake". While his feelings about his fellow humans seem thankfully
outdated, it is surprising and disturbing that his feelings about
aesthetics are still widespread and even worse, misunderstood.

There is a common misconception in art and technology crossovers
that any cultural product can become art if it is robbed of its utility,
that the product of a scientific or technological process is art if it has
been done simply because it can be done. This misunderstanding
replaces "art for art's sake" with "anything for its own sake".

This is the logic behind the pretty microscope photographs of dyed
cells that pharmaceutical companies are so fond of hanging in
galleries, the aesthetically pleasing by-products of their "too-
complicated to explain to the public" experiments. "Art for public
relation's sake".

In the context of tech-art culture this logic has produced an even
more horrible misunderstanding: "art for technology's sake". The
reliance on some kind of unconscious, artistic intuition performed in
front of a computer has resulted in the installation of countless
adverts for Macromedia, Apple, Sony and other culturpreneurial
technology companies in high-profile art galleries around the world.

The problem for artists who do not want to be unpaid advertising
executives is that without careful and critical attention to the
processes and imperatives of software, their work can be
processed into bland "content" and aesthetic pleasantry through an
unacknowledged collaboration with corporate software.

http://www.twenteenthcentury.com/

Auto-Illustrator Users Guide

 90

Utility is also the myth of the software tool. Personal experience as
well as statistics indicate that computer use can slow productivity
and create huge expense and inefficiency. Technology companies
cover over this absurdity by creating and fostering needs for their
software's unnecessary and distracting "features", creating
problems by anticipating them with software solutions.
Incompatibility is built into software to leverage increased market
share and even worse "mind share". This term is used constantly
by software marketing people, but never defined. The reason for
this becomes clear when we try. Market share can be defined as "a
company's control over consumer spending expressed as a
percentage of the sales for the total industry". So with this in mind,
the term "mind-share" takes on a sinister, Orwellian meaning.

The ultimate goal of the company is to become the "industry
standard" (100% market and mind share), entirely framing the work
of the media producer, writer, or artist with the rules and potentials
of their software. And by framing the work of the media producer
their intentions filter down to the media consumers. This situation
can be seen in terms of a hierarchical food chain diagram with the
media consumers, the public at the bottom. Their mind-share is
consumed by the media producer whose aggregated share is in
turn consumed by the programmers of their software tools.

Auto-Illustrator Users Guide

 91

 software producers

 /|01*10|\
 | |0***0| |
 \|01*10|/ +------------+
 --+-- |intervention|
 X |point 2 |
 / \<---------+------------+
 / \
 media producers
 | |
 v v
 0 +-+ 0 +-+
 +\-| | +\-| |
 | *+-+ | *+-+
 +-+--+ +-+--+ +------------+
 / | \ |intervention|
 / | \ |point 1 |
 / | \<-------+------------+
 / | \
 media consumers
 / | \
 / | \
 / | \
 | | |
 v v v
+-------+ +-------+ +-------+
O		_O_		_O_			
/ \		/ \		/ \			
+-------+ +-------+ +-------+

fig. 1

Computer technologies of media viewing or "browsing", and
particularly the web browser, capitalise on mind-share by selling a
percentage of their mind-share to the highest bidder, and then
framing the act of looking, of absorbing information with advertising.

Artistic software projects have often intervened at this point in the
hierarchy, between the media producer and the consumer (see fig.
1 - intervention point 1).

The classic example is I/O/D's Webstalker, a lean, stripped down
browser that cuts through the distracting visual complexity and
commercial glare of the web and reveals the quietly expanding
information framework underlying it. This and the minimalist,
unfamiliar interface breaks the integrity of the simulated "Desktop",
the graphical user interface and its extension to the web through
the browser.

Auto-Illustrator Users Guide

 92

The 1980's video game style graphics of Nullpointer's Webtracer
software has a similar aim and method, to unsettle the metaphor of
browsing and our casual acceptance of that single visualisation of
the web as a 2 dimensional shopping mall.

Jodi's "%wrong browser" collection is the least user-friendly of
these "art browsers." The usual situation in which the browser is
produced by a single multinational corporation and then used
globally is turned on its head. Each of the %wrong browsers has a
domain-like title: ".co.kr" (Korean) ,".nl" and the ubiquitous ".com"
and ".org". Each of these browsers exhibit a difficult, illegible
interface that slowly reveals a kind of personality. The Korean
browser is very nervous, has no words or symbols, only a shivering
cursor on a dark screen that suddenly erupts with scrolling colour
and text like a malfunctioning Times Square billboard display.
".com" is flamboyant, brightly coloured and social, graphically
linking roughly drawn boroswer windows and happily spreading the
html thickly over the screen. ".org" is a monstrous bureaucrat-
printer, maniacally documenting and recording every site that it
visits in semi-sensible ASCII and saving its mutilated source code
as text files all over the computer. ".nl" is a reserved, dry gatherer of
information with a low-tech green-screen aesthetic. The behaviours
of each browser could be seen to correspond to putative national
and multinational domain name identities and stereotypes; each
flattening out the user's experience of the disparate spaces of the
web into a continuation of their own fractured personalities, just as
one might argue that Internet Explorer or Netscape Navigator
flatten out the disparate spaces of the web into a corporate mono-
vision.

Over the last few years there have been many more "art browsers"
(i) , and although these projects continue to make very astute
comments about the state of the web and the browser, the potential
of software as an artistic medium offers much more than this kind of
"intervention".

In "A means of mutation", Matthew Fuller describes the definition
which the Webstalker aims to fulfil as "not just art". A piece that
could be relevant in multiple contexts, could move between use
value and conceptual value seamlessly. "Not just art" rejects the
dead end-dichotomy of culture vs. counter-culture and suggests
hybridised, developmental, unstable cultural forms that can sustain
themselves outside of art's frame of reference and financial
backing.

Auto-Illustrator Users Guide

 93

Although there are ways to make use of the Webstalker in a non-art
context (visualising the structure of web sites for development
purposes), no development team has emerged with new ideas for
how to improve it as a tool, Webstalker 2 was promised, but never
emerged. "Not just art" did not happen with the Webstalker, and in
"means of mutation" Fuller almost acknowledges this. He calls it
"tactical software" and observes that its development was limited by
money, time and available skills. As tactical software the
Webstalker was very successful, generating huge amounts of
media attention, critical thinking and inspiring further developments
in art and software, but I would argue that to become "not just art"
the artwork must have utility outside of the frame of art.(ii)

In the diagram above, the most influential position is clearly that of
the software programmer, and the most obvious point for
intervention is there, between the software producer and the media
producer. (See fig.1 intervention point 2).

Two artistic software projects that fit into the category of media
production tool, and function as "not just art" are Auto-Illustrator by
Adrian Ward and b1257+12 by Netochka Nezvanova.

On first inspection Auto-Illustrator looks like a standard vector
graphics program. However, once you start using it, the quirky
interface and the difficulty of making the program behave as
expected makes explicit the fact that another agenda is at work.

A favourite feature are the bugs; rule-based automata that drag
lines of colour around behind them. This is a playful reference to
the 60's Fluxus art practice of dipping insects in ink and letting them
draw a path over paper as a way of challenging conventional
notions of authorship. In this case it becomes a light-hearted joke
and an incitement for the user to engage with Ward in a struggle
over the authorship of the piece. Certain vectors of control are
available to the user (add and remove bugs) but the behaviour of
the bugs is determined by the algorithms Ward used to program
them. In this way a third party is brought into the struggle for the
authorship of the piece: the generative code that underlies many of
the features of Auto-Illustrator. I am no expert, but for the purposes
of examining this artwork a quick introduction to these ideas may be
necessary:

Biologist Aristid Lindenmayer gives his name to the mathematical
modelling of growth patterns in nature, trees, leaf structures etc.
The generative grammars developed to model these processes
work by recursive development of a limited set of symbols. For

Auto-Illustrator Users Guide

 94

example, if we start with a phrase: AGGDB, and say that for every
iteration we replace A with AGG, G with DDA, B produces B and D
produces BBA.

A=3DAGG
G=3DDDA
D=3DBBA
B=3DB

on the first iteration we have:

AGGDB

on the second,

AGGDDADDABBAB

on the third

AGGDDADDABBABBAAGGBBABBAAGGBBAGGB

past here it is better done by computer. If "A" meant "draw a line 10
pixels long" and "G" meant "move left 10 pixels" you can see how
this kind of generative code can produce unpredictable but formally
coherent visual developments. (The coherence is due to the
inevitable self-similarity of the designs).

Emergent behaviour systems work in a similar way, a simple set of
rules is given to a bug, for example: walk forward, turn a random
number of degrees every 20 paces and don't bump into other bugs
or lines. When you have one bug, a human can anticipate the
results of this behaviour quite well. Once there are 200 bugs, all
avoiding each other and changing each others paths, the
complexity is immense. The results cannot be anticipated without
computer modelling.

By incorporating these kinds of algorithms into Auto-Illustrator there
is a loss of authorial control by all parties, neither Adrian Ward, nor
the user, nor the computer can completely determine the outcome
of their collaboration. This complex conception of authorship as a
kind of running battle has been extended in later releases by the
"Swap Artwork" plugin. While working on a drawing, the user can
apply the "Swap Artwork" filter which uploads the user's image to
the Auto-Illustrator server and swaps it for an image being worked
on by another Auto-Illustrator user. Yet another player is brought
into the authorship competition: the collective user group of the
program at any one time.

Auto-Illustrator Users Guide

 95

The effect of all these generative features and sudden, worrying
distortions of the artwork is alternately fascinating and aesthetically
horrible. Netochka Nezavanova's "b1257+12" which she describes
as a real-time interactive sound processor is similarly difficult to
manage.

At first the interface is completely illegible, lists of numbers respond
to mouse or keyboard activity, sliding scales with no labels respond
anti-intuitively to mouse movements. Even if importing and working
on a familiar sound file, it is unclear whether the tumult of sound
emerging from the machine are being affected by the user's activity
at all.

However, after playing and experimenting for a long time it is
possible to tease a method of use out of the software, find ways of
behaving and moving that for some reason produce a desired
sound. In this way, using b1257+12 becomes a very personal
experience, each user determines their own technique while at the
same time, random re-configurations of key commands and
responses constantly alter the programs functioning, undermining
this familiarity with the software, forcing the user to start again.

What both these artworks succeed in doing is making explicit the
hidden struggles and difficulties of conventional software. For
example, the struggle for authorial control with Photoshop is less
visible. Photoshop hides that struggle in a hugely complex, slick
interface where the designer is offered a million options in a million
pull down menus to give the illusion that they are making choices
and are in total control of what they are doing. In both Auto-
Illustrator and b1257+12, the subjective presence of the author is
always felt. The user is never allowed the comforting illusion of
control.

As Adrian Ward says "When someone uses my software, it's me!".
Artistic subjectivity, so often hidden by the dry, fleshless aesthetics
of computer based art is a vital and visible part of both these
projects. The humorous and dysfunctional human-computer
interfaces become interfaces between the viewer and the artist. The
software takes on the programmers artistic subjectivity and
engages the user in dialogue, organising and interrupting their
process and final product. It is this process of negotiation and
compromise between the artist-programmer and the media
producer that makes the product interesting.

Auto-Illustrator Users Guide

 96

In both cases, the persona of the artist/programmer is pushed
beyond the limits of the software. Netochka Nezvanova (or one of
her many selves as integer, antiorp or m9ndfukc) is notorious for
asserting her persona in mailing lists. She writes copiously, posting
provocative, sometimes callous, sometimes poetic texts to many
lists, often creating mayhem and discord by appealing to some and
antagonising other members of the list, dividing them on the issue
of whether she should be banned or not. The content of her posts is
usually infused with belligerent views about authorship and
intellectual property (she will often claim authorship and threaten to
sue people she considers to have stolen her ideas), or she'll make
back-stabbing personal tirades against people in the net art scene
who she has taken a dislike to. In other contexts (the support
mailing list for one of her software tools for example) she is very
helpful and always responds to intelligent queries within a few
hours. A friend of mine who has purchased her most popular
software "NATO.0+55" and is on the mailing list tells me that
whenever he emails her he is in constant fear that the question
might have been answered already in the support forum, and he'll
get flamed. The texture of her email exchanges also seems to have
been algorithmically processed, re-purposing old BBS traditions
such as ASCII art and "hack-speak" certain roman characters are
replaced with unpronounceable punctuation marks or numbers. Her
language-game mixes and remixes Russian, English, French, and
German vocabulary in the same post which may contain varied
cultural references. The rules of this language-game are
inconsistent and constantly mutate, forcing a constant re-evaluation
of the text and its author, "a collapse of unification through
multiplicity"(iii) as Nezvanova puts it. Remaining an anonymous,
multiple and antagonistic persona allows Nezvanova to avoid
becoming too cosy in the art world, making alliances and friends
there who might limit the definition of what she is doing by
grounding it in the specific cultural context of art.

Auto-Illustrator's support mailing list performs a similar function.
From reading the traffic on the list it seems that many people using
it are ignorant of the fact that it is art programmed by an artist. The
pseudo-corporate identity of the software company "Signwave"
maintains this ignorance with the use of more generative code.
When someone emails the support list, a Perl script written by
Adrian Ward generates a random identity, name and job title that he
then uses to answer the query.

For example, a recent query to the list asked if there was going to
be a Mac OS X port of the software. A fictional character called
"Jon Tippecanoe" in the "OS X port development department" gave

Auto-Illustrator Users Guide

 97

a short, rude answer and signed off "I suppose I'm going to get fired
now".

In both these "software support" projects the tone switches
constantly from helpful to playful to insulting, mirroring the
unpredictable, conflicting processes of trying to make something
with the software.

By constantly switching between collaborative and antagonistic
attitudes towards the user, these pieces of software shift fluidly
between being useful and useless, gratifying and frustrating, funny
and scary.

This ambiguity also extends to media that is produced using the
software. On the one hand, it is often aesthetically horrible, a partly
random product made without clear intention, but on the other hand
it is the result of a fascinating and unique collaborative process
between the artist-programmer and the software user.

Perhaps the most challenging uncertainty for users of Auto-
Illustrator and b1257+12 is that while the software is not definitely
useful, it does definitely cost money. The piracy protection on both
pieces of software is far more sophisticated than many large
commercial software packages, requiring server-based registration
keys that are verified each time the software is installed on a new
computer. A full version of b1257+12 costs $96.69 and Auto-
Illustrator costs about $100 to register (unregistered copies
eventually expire and according to Adrian Ward, will start behaving
very badly, imposing algorithmic authorship more assertively).
Jealously guarding the copyright of expensive products is not
usually associated with artistic approaches to making software, but
in these cases it works both economically and conceptually;
allowing the artist to maintain financial independence from
corporate, art-world or state funding, and forcing the user to pay,
clearly distinguishes these projects from most digital media art.

Using these tools, and certainly programming them addresses
problems of authorship, definition and sustainability that many
artists have struggled with when using software and digital media.
By making struggles for authorial control very explicit the delicate
ambiguity of these useless utilities is maintained. Avoiding definition
as conceptual artistic interventions or as software tools they clearly
fulfil Fuller's definition of "not just art".

Auto-Illustrator Users Guide

 98

Notes

(i) A comprehensive list of art browsers with links would be useful
so please email saul@twenteenthcentury.com with any I miss out
and I'll add them. This list includes interfaces to the web as a whole,
not to a single web site or database (e.g. Rhizome's alt.browser
series).

I/O/D's Webstalker:
http://www.backspace.org/iod

Jodi's Wrongbrowser:
http://www.wrongbrowser.com/

Nullpointer's Web Tracer:
http://www.nullpointer.co.uk/-/webtracer/

Mark Napier's Shredder:
http://www.potatoland.org/shredder/

Tom Corby and Gavin Baily's Reconnoitre:
http://www.reconnoitre.net/

Andi Freeman's Earshot (feat. Jason Skeet), Funksolegrind and
notScape:
http://www.deepdisc.com/ns/
http://www.deepdisc.com/earshot/

Mark Dagett's Browser Gestures:
http://www.flavoredthunder.com/dev/browser-gestures/

Many examples generated by the International Browserday
competition:
http://www.waag.org/browser

http://www.backspace.org/iod
http://www.wrongbrowser.com/
http://www.nullpointer.co.uk/-/webtracer/
http://www.potatoland.org/shredder/
http://www.reconnoitre.net/
http://www.deepdisc.com/ns/
http://www.deepdisc.com/earshot/
http://www.flavoredthunder.com/dev/browser-gestures/
http://www.waag.org/browser

Auto-Illustrator Users Guide

 99

(ii) Later projects and collaborations by the makers of the
Webstalker with Mongrel have resulted in projects like the Linker
(http://www.linker.org.uk/) and its use in training workshops
(http://www.mongrelx.org/) that fulfil this definition of "not just art"
far more successfully. However, an analysis of the tactics employed
by Mongrel in using the Linker for "arts education" and their
methods of avoiding that institutional dead-end go far beyond the
scope of this text.

(iii) 30/10/01 - I've been informed I may be wrong about this. My
source was: http://www.m9ndfukc.org/korporat/04.html. I f
anyone can add any information as to how this language game
works and what it is called, I would be very grateful.

http://www.linker.org.uk/
http://www.mongrelx.org/
http://www.m9ndfukc.org/korporat/04.html

Auto-Illustrator Users Guide

 100

Auto-Illustrator Users Guide

 101

Concepts, Notations, Software Art

Florian Cramer
March, 2002.

© This document can be freely copied and used according to the terms of the Open
Publication License http://www.opencontent.org/openpub

C/O FREIE UNIVERSITÄT BERLIN, SEMINAR FÜR ALLGEMEINE UND
VERGLEICHENDE LITERATURWISSENSCHAFT, HÜTTENWEG 9, D-14195
BERLIN, CANTSIN@ZEDAT.FUBERLIN.DE http://userpage.fu-berlin.de/~cantsin

Software and Concept Notations
Software in the Arts.
To date, critics and scholars in the arts and humanities have
considered computers primarily as storage and display media, as
something which transmits and reformats images, sound and
typography. Reflection of the, as such, invisible layer of software is
rare. Likewise, the term “digital art” has been associated primarily
with digital images, music or audiovisual installations using digital
technology. The software which controls the audio and the visuals
is frequently neglected, working as a black box behind the scenes.
“Interactive” room installations, for example, get perceived as a
interactions of a viewer, an exhibition space and an image
projection, not as systems running on code. This observation all the
more applies to works in which it is not obvious at all that their
production relied on programmation and computing. John Cage’s
1981 radio play “Roaratorio”, for example, appears to be a tape
montage of a spoken text based on James Joyce’s “Finnegan’s
Wake”, environmental sounds recorded in several cities of the world
and Irish folk music, edited with analog recording technology. Yet,
at the same time it is an algorithmic artwork; the spoken text was
extracted from the novel using a purely syntactical, formal method
(mesostychs of the name “James Joyce”), and the montage was
done according to a random score generated on a computer at the
Parisian IRCAM studios. While the book-plus-CD set of “Roarotorio”
documents the whole composition extensively, containing the audio
piece itself, a recording and a reprint of John Cage’s reading, a
recording and a reprint of an interview, an inventory of the cities
where sound was recorded, it includes the computer generated
score itself only in a one-page excerpt and nothing at all of the
computer program code which generated the random score.[1]

The history of the digital and computer-aided arts could be told as a
history of ignorance against programming and programmers.

http://www.opencontent.org/openpub
http://userpage.fu-berlin.de/~cantsin

Auto-Illustrator Users Guide

 102

Computer programs get locked into black boxes, and programmers
are frequently considered to be mere factota, coding slaves who
execute other artist’s concepts. Given that software code is a
conceptual notation, this is not without its own irony. In fact, it is a
straight continuation of romanticist philosophy and its privileging of
aisthesis (perception) over poeisis (construction),[2] cheapened into
a restrained concept of art as only that what is tactile, audible and
visible. The digital arts themselves participate in this accomplicity
when they call themselves [new] “media art”. There’s nothing older
than “new media”, a term which is little more than a superficial
justification for lumping together a bunch of largely unrelated
technologies, such as analog video and computing, just because
they were “new” at a particular time. If one defines as a medium
something that it is between a sender and a receiver, then
computers are not only media, but also senders and receivers
which themselves are capable of writing and reading, interpreting
and composing messages within the limitations of the rule sets
inscribed into them. The computer programs for example which
calculate the credit line of checking accounts or control medical
instruments in an emergency station can’t be meaningfully called
“media”. If at all, computer processes become “media” only by the
virtue that computers can emulate any machine, including all
technical media, and by the virtue of the analog interfaces which
transform the digital zeros and ones into analog sound waves,
video signals, print type and vice versa.

A Crash Course in Programming.
A piece of software is a set of formal instructions, or, algorithms; it
is a logical score put down in a code. It doesn’t matter at all which
particular sign system is used as long as it is a code, whether digital
zeros and ones, the Latin alphabet, Morse code or, like in a
processor chip, an exactly defined set of registers controlling
discrete currents of electricity. If a piece of software is a score, is it
then by definition an outline, a blueprint of an executed work?

Auto-Illustrator Users Guide

 103

Imagine a Dadaist poem which makes random variations of Hugo
Ball’s sound poem “Karawane” (“Caravan”):

KARAWANE
jolifanto bambla ô falli bambla
grossiga m’pfa habla horem
égiga goramen
higo bloiko russula huju
hollaka hollala
anlogo bung
blago bung
blago bung
bosso fataka
ü üü ü
schampa wulla wussa ólobo
hej taat gôrem
eschige zunbada
wulebu ssubudu uluw ssubudu
tumba ba-umpf
kusagauma
ba-umpf

The new Dada poem could simply consists of eight variations of the
line “tumba ba-umpf”. The author/performer could throw a coin
twice for each line and, depending on the result, choose to write
down either the word “tumba” or “ba-umpf”, so that the result would
look like:

tumba tumba
ba-umpf tumba
tumba ba-umpf
tumba ba-umpf
ba-umpf ba-umpf
ba-umpf tumba
tumba ba-umpf
tumba ba-umpf

Auto-Illustrator Users Guide

 104

The instruction code for this poem could be written as follows:

(1) Take a coin of any kind with two distinct sides.
(2) Repeat the following set of instructions eight times:

(a) Repeat the following set of instructions twice:
(i) Throw the coin.
(ii) Catch it with your palm so that it lands on
one side.
(iii) If the coin shows the upper side, do the
following:

• Say "tumba"
(iv) Else do the following:

• Say "ba-umpf"
(b) Make a brief pause to indicate the end of the line.

(3) Make a long pause to indicate the end of the poem.

Since these instructions are formal and precise enough to be as
well executed by a machine (imagine this poem implemented into a
modified cuckoo clock), they can be translated line by line into a
computer program. Just as the above instruction looks different
depending on the language it is written in, a computer program
looks different depending on the programming language used. Here
I choose the popular language “Perl” whose basic instructions are
rather simple to read:

for $lines (1 .. 8)
{
for $word (1 .. 2)

{
$random_number = int(rand(2));
if ($random_number == 0)

{
print "tumba"
}

else
{
print "ba-umpf"
}

print " "
}

print "\n"
}

The curly brackets enclose statement blocks executed under
certain conditions, the $ prefix designates a variable which can
store arbitrary letters or numbers, the “rand(2)” function generates a
random value between 0 and 1.9, “int” rounds its result to either
zero or one, “ ” stands for a blank, “\n” for a line break. This
program can be run on virtually any computer; it is a simple piece of
software. Complex pieces of software, such as computer operating

Auto-Illustrator Users Guide

 105

systems or even computer games, differ from the above only in the
complexity of their instructions. The control structures - variable
assignments, loops, conditional statements - are similar in all
programming languages.

Unlike in the instruction for throwing coins, the artists’ work is done
once the code is written. A computer program is a blueprint and its
execution at the same time. Like a pianola roll, it is a score
performing itself. The artistic fascination of computer programming -
and the perhaps ecstatic revelation of any first-time programmer - is
the equivalence of architecture and building, the instant gratification
given once the concept has been finished. Computer programming
collapses, as it seems, the second and third of the three steps of
concept, concept notation and execution.

Contrary to conventional data like digitised images, sound and text
documents, the algorithmic instruction code allows a generative
process. It uses computers for computation, not only as storage
and transmission media. And this precisely distinguishes program
code from non-algorithmic digital code, describing for example the
difference between algorithmic composition on the one hand and
audio CDs/mp3 files on the other, between algorithmically
generated text and “hypertext” (a random access database model
which as such doesn’t require algorithmic computation at all), or
between a graphical computer “demo” and a video tape. Although
one can of course use computers without programming them, it is
impossible not to use programs at all; the question only is who
programs. There is, after all, no such thing as data without
programs, and hence no digital arts without the software layers they
either take for granted, or design themselves.

To discuss “software art” simply means to not take software for
granted, but pay attention to how and by whom programs were
written. If data doesn’t exist without programs, it follows that the
separation of processed “data” (like image and sound files) from
“programs” is simply a convention. Instead, data could be directly
embedded into the algorithms used for its transmission and output
to external devices. Since a “digital photograph”, for example, is bit-
mapped information algorithmically transformed into the electricity
controlling a screen or printer, via algorithmic abstraction layers in
the computer operating system, it follows that it could just as well
be coded into a file which contains the whole transformation
algorithms themselves so that the image would display itself even
on a computer that provides no operating system.[3]

Auto-Illustrator Users Guide

 106

Software Art

Executable Code in Art.
If software is generally defined as executable formal instructions,
logical scores, then the concept of software is by no means limited
to formal instructions for computers. The first, English-language
notation of the Dadaist poem qualifies as software just as much as
the three notations in the Perl programming language. The
instructions only have to meet the requirement of being executable
by a human being as well as by a machine. A piano score, even a
19th century one, is software when its instruction code can be
executed by a human pianist as well as on a player piano.

The Perl code of the Dada poem can be read and executed even
without running it on machines. So my argument is quite contrary to
Friedrich Kittler’s media theory according to which there is either no
software at all or at least no software without the hardware it runs
on:[4] If any algorithm can be executed mentally, as it was common
before computers were invented, then of course software can exist
and run without hardware - a good example are programming
handbooks. Although they chiefly consist of printed computer code,
this code gets rarely ever executed on machines, but provides
examples which readers follow intellectually, following the code
listings step by step and computing them in their minds.

Instead of adapting Dadaist poetry as software, one could regard
some historical Dadaist works as software right away; above all,
Tristan Tzara’s generic instruction for writing Dada poems by
shuffling the words of a newspaper article:

To make a Dadaist poem:
Take a newspaper.
Take a pair of scissors.
Choose an article as long as you are planning to make your
poem. Cut out the article.
Then cut out each of the words that make up this article and put
them in a bag.
Shake it gently.
Then take out the scraps one after the other in the order in which
they left the bag.
Copy conscientiously.
The poem will be like you.
And here you are a writer, infinitely original and endowed with a
sensibility that is charming though beyond the understanding of
the vulgar.

Auto-Illustrator Users Guide

 107

The poem is effectively an algorithm, a piece of software which may
as well be written as a computer program.[6] If Tzara’s process
would be adapted as Perl or C code from the original French, it
wouldn’t be a transcription of something into software, but a
transcription of non-machine software into machine software.

Concept Art and Software Art.
The question of what software is and how it relates to non-
electronic contemporary art is at least thirty-two years old. In 1970,
the art critic and theorist Jack Burnham curated an exhibition called
"Software" at the Jewish Museum of New York which today is
believed to be first show of concept art. It featured installations of
US-American concept artists next installations of computer software
Burnham found interesting, such as the first prototype of Ted
Nelson’s hypertext system “Xanadu”. Concept art as an art “of
which the material is ‘concepts,’ as the material of for ex. music is
sound” (Henry Flynt’s definition from 1961 [7]) and software art as
an art whose material is formal instruction code seem to have at
least two things in common:

(1) the collapsing of concept notation and execution into
one piece;
(2) the use of language; instructions in software art,
concepts in concept art. Flynt observes: “Since ‘concepts’
are closely bound up with language, concept art is a kind of
art of which the material is language”.[8]
It, therefore, is not accidental that the most examples of
preelectronic software art cited here are literary. Literature
is a conceptual art in that is not bound to objects and sites,
but only to language. The trouble the art world has with
net.art because it does not display well in exhibition spaces
is foreign to literature which always differentiated between
an artwork and its material appearance.
Since formal language is a language, software can be seen
and read as a literature.[9]

If concepts become, to quote Flynt again, artistic“material”, then
concept art differs from other art in that it actually exposes
concepts, putting their notations up front as the artwork proper. In
analogy, software art in particular differs from software-based art in
general in that it exposes its instructions and codedness. Since
formal instructions are a subset of conceptual notations, software
art is, formally, a subset of conceptual art.

My favourite example, of both concept art in Flynt’s sense and non-
computer software art, is La Monte Young’s “Composition 1961”, a

Auto-Illustrator Users Guide

 108

piece of paper containing the written instruction “Draw a straight
line and follow it”. The instruction is unambiguous enough to be
executed by a machine. At the same time, a thorough execution is
physically impossible. So the reality of piece is mental, conceptual.

The same duplicity of concept notation and executable code exists
in Sol LeWitt’s 1971 “Plan for a Concept Art Book”, a series of book
pages giving the reader exact instructions to draw lines on them or
strike out specific letters.[10] LeWitt’s piece exemplifies that the art
called concept art since the 1970s was by far not as rigorous as the
older concept art of Henry Flynt, La Monte Young and Christer
Hennix: While the “Composition 1961” is a concept notation
creating an artwork that itself exists only as a concept, mentally,
LeWitt’s “Plan for a Concept Art Book” only is a concept notation of
a material, graphic artwork. Unlike the concept art “of which the
material is ‘concepts”’, LeWitt’s piece belongs to a concept art that
rather should be called a concept notation art or “blueprint art”; an
art whose material is graphics and objects, but which was instead
realised in the form of a score. By thus reducing its own material
complexity, the artwork appears to be “minimalist” rather than
rigorously conceptualist.

A writing which writes itself, LeWitt’s “Plan” could also be seen in a
historical continuity of combinatory language speculations: from the
permutational algorithms in the Sefer Jezirah and ecstatic Kabbalah
to the medieval “ars” of Raimundus Lullus to 17th century
permutational poetry and Mallarmé’s “Livre”. The combinatory most
complex known permutation poem, Quirinus Kuhlmann’s 1771
sonnet “Vom Wechsel menschlicher Sachen” consists of 13 * 12
nouns can be arbitrarily shuffled so that they result in 101 1 4

permutations of the text.[11] Kuhlmann’s and La Monte Young’s
software arts meet in their aesthetic extremism; in an afterword,
Kuhlmann claims that there are more permutations of his poem
than grains of sand on the earth.[12] If such implications lurk in
code, a formal analysis is not enough. Concept art potentially
means terror of the concept, software art terror of the algorithm; a
terror grounded in the simultaneity of minimalist concept notation
and totalitarian execution, helped by the fact that software collapses
the concept notation and execution in the single medium of
instruction code - Sade’s “120 days of Sodom” could be read as a
recursive programming of excess and its simultaneous reflection in
the medium of prose.[13] The popularity of spamming and denial-
of-service code in the contemporary digital arts is another practical
proof of the perverse double-bind between software minimalism
and self-inflation; the software art pieces awarded at the

Auto-Illustrator Users Guide

 109

transmediale.02 festival, “tracenoizer” and “forkbomb.pl” also
belong to this category.

La Monte Young’s “Composition 1961” not only provokes to rethink
what software and software art is. Being the first and still most
elegant example of all artistic jamming and denial-of-service code, it
also addresses the aesthetics and politics coded into instructions.
Two years before Burnham’s “Software” exhibition, the computer
scientist Donald E. Knuth published the first volume of his famous
textbook on computer programming, “The Art of Computer
Programming”.[14] Knuth’s wording has adopted in what Steven
Levy calls the hacker credo that “you can create art and beauty with
computers”.[15] It is telling that hackers, otherwise an avant-garde
of a broad cultural understanding of digital technology, rehash a
late-18th century classicist notion of art as beauty, rewriting it into a
concept of digital art as inner beauty and elegance of code. But
such aesthetic conservativism is widespread in engineering and
hard-science cultures; fractal graphics are just one example of Neo-
Pythagorean digital kitsch they promote. As a contemporary art, the
aesthetics of software art includes ugliness and monstrosity just as
much as beauty, not to mention plain dysfunctionality, pretension
and political incorrectness.[16]

Above all, software art today no longer writes its programs out of
nothing, but works within an abundance of available software code.
This makes it distinct from works like Tzara’s Dada poem which, all
the while it addresses an abundance of mass media information,
contaminates only the data, not its algorithm; the words become a
collage, but the process remains a synthetic clean-room construct.

Since personal computers and the Internet became popular,
software code in addition to data has come to circulate in
abundance. One thus could say that contemporary software art
operates in a postmodern condition in which it takes pre-existing
software as material — reflecting, manipulating and
recontextualising it. The “mezangelle” writing of mez, an Australian
net artist, for example uses software and protocol code as material
for writings in a self-invented hybrid of English and pseudo-code.
Her “net.wurks” are an unclean, broken software art; instead of
constructing program code synthetically, they use readymade
computations, take them apart and read their syntax as gendered
semantics. In similar fashion, much software art plays with control
parameters of software. Software artworks like Joan Leandre’s
“retroyou” and “Screen Saver” by Eldar Karhalev and Ivan Khimin
are simply surprising, mind-challenging disconfigurations of
commercial user software: a car racing game, the Microsoft

Auto-Illustrator Users Guide

 110

Windows desktop interface. They manage to put their target
software upside down although their interventions are technically
simple and don’t involve low-level programming at all.

Software Formalism vs. Software Culturalism.
Much of what is discussed as contemporary software art and
discourse on has its origin in two semi-coherent London-based
groups. The older one around Matthew Fuller, Graham Harwood
and the groups I/O/D and Mongrel is known, among others, for the
experimental web browser “WebStalker”, which instead of formatted
pages displays their source code and link structures, the “Linker”, a
piece of “social software” (to use a term by Fuller) designed to
empower non-literate users to design their own digital information
systems, and “natural selection”, a politically manipulated web
search engine. Fuller also wrote a scrupulous cultural analysis of
Microsoft Word’s user interface and an essay with the
programmatic title “Software as Culture”. The other group involves
the programmer-artists Adrian Ward (whose “Auto- Illustrator” won
the transmediale.01 software art prize) and Alex McLean (whose
“forkbomb.pl” won the transmediale.02 software art prize), the
theoretician Geoff Cox and participants in the mailing list “eu-gene”,
the web site http://www.generative.net and the “DorkBot”
gatherings in London (which involve poetry readings of program
code). Both groups take exactly opposite standpoints to software
art and software criticism: While Fuller/Harwood regard software as
first of all a cultural, politically coded construct, the eu-gene group
rather focuses on the formal poetics and aesthetics of software
code and individual subjectivity expressed in algorithms.

If software art could be generally defined as an art

• of which the material is formal instruction code, and/or
• which addresses cultural concepts of software,

then each of their positions sides with exactly one of the two
aspects. If Software Art would be reduced to only the first, one
would risk ending up a with a neo-classicist understanding of
software art as beautiful and elegant code along the lines of Knuth
and Levy. Reduced on the other hand to only the cultural aspect,
Software Art could end up being a critical footnote to Microsoft
desktop computing, potentially overlooking its speculative potential
at formal experimentation. Formal reflections of software are, like in
this text, inevitable if one considers common-sense notions of
software a problem rather than a point of departure; histories of
instruction codes in art and investigations into the relationship of
software, text and language still remain to be written.

http://www.generative.net

Auto-Illustrator Users Guide

 111

Footnotes

1 [Cag82]—Regarding randomness generated with computers, the
software artist Ulrike Gabriel says that it doesn’t exist because the
machine as a fact by itself is not accidental.

2 A similar angle is taken in the paper “The Aesthetic of Generative
Code” by Geoff Cox, Adrian Ward and Alex McLean, [CWM01]

3 I would not be surprised if in a near future the media industry
would embed audiovisual data (like a musical recording) directly
into proprietary one-chip hardware players to prevent digital copies.

4 [Kit91]

5 [Tza75]

6 My own Perl CGI adaption is available under
http://userpage.fu-berlin.de/~cantsin/permutations/tzara/
poeme_dadaiste.cgi

7 [Fly61]

8 ibid.

9 But since formal language is only a small subset of language as a
whole, conclusions drawn from observing software code can’t be
generally applied to all literature.

10 [Hon71], p. 132-140

11 [Kuh71]

12 ibid.

13 As Abraham M. Moles noticed already in 1971, [Mol71], p.
124

14 knuth:art

15 according Steven Levy [Lev84]; among those who explicitly
subscribe to this is the German Chaos Computer Club with its
annual “art and beauty workshop”.

16 which is why I think it would be wrong to (a) restrict software art
to only properly running code and (b) exclude, for political reasons,

http://userpage.fu-berlin.de/~cantsin/permutations/tzara/

Auto-Illustrator Users Guide

 112

proprietary and other questionably licensed software from software
art presentations.

References

[Cag82] John Cage. Roaratorio. Ein irischer Circus über Finnegans
Wake. Athenäum, Königstein/Taunus, 1982. 1

[CWM01] Geoff Cox, Adrian Ward, and Alex McLean. The
A e s t h e t i c s o f G e n e r a t i v e C o d e , 2 0 0 1 .
http://www.generative.net/papers/aesthetics/index.html. 2

[Fly61] Henry Flynt. Concept art. In La Monte Young and Jackson
MacLow, editors, An Anthology. Young and MacLow, New York,
1963 (1961). 7

[Hon71] Klaus Honnef, editor. Concept Art. Phaidon, Köln, 1971). 8

[Kit91] Friedrich Kittler. There is no software, 1991.
http://textz.gnutenberg.net/textz/kittler_friedrich_there_is_no_softwa
re.txt. 6

[Kuh71] Quirinus Kuhlmann. Himmlische Libes=küsse. ?, Jena,
1671. 8

[Lev84] Steven Levy. Hackers. Project Gutenberg, Champaign, IL,
1986 (1984). 9

[Mol71] Abraham A. Moles. Kunst und Computer. DuMont, Köln,
1973 (1971). 8

[Tza75] Tristan Tzara. Pour fair une poème dadaïste. In Oeuvres
complètes. Gallimard, Paris, 1975. 6

http://www.generative.net/papers/aesthetics/index.html
http://textz.gnutenberg.net/textz/kittler_friedrich_there_is_no_softwa

Auto-Illustrator Users Guide

 113

Auto-Illustrator Users Guide

 114

Interview with Adrian Ward

Dr. Tilman Baumgärtel

This interview was conducted while at the Berlin Beta 2001 conference. It was
subsequently updated in March 2002 after Auto-Illustrator 1.0 was released. This
interview appears here with the kind permission of Tilman Baumgärtel, to whom
Signwave is grateful.

?: You created the graphics program "Auto-Illustrator". Can you
explain some of the features of this software?

!: It's quite difficult to do that, because it's so chaotic (I hate that
word - it implies nothing). What I tend to say is that the software has
its own agenda. For example, when you use the text tool, it
generates it's own text instead of rendering the words that you type.
There are no consistent tools. "Auto-Illustrator" is inconsistent even
in its inconsistency. So some tools will misbehave more than
others.

?: Could you describe some of these "misbehaviours"?

?: Sure. If you try to draw a line, it scribbles and makes wild
gestures. You can modify these gestures to some extent, but you
are never really in control of it. When you put crawling bugs down
into the document, they draw lines by themselves, you never quite
know what they are going to do. They might even make the
software crash, which actually happens quite often. (laughs)

!: Do you take these features in and out from one version to
another?

?: Yes, there is quite a lot of features that get added and then
removed in the next version, because I changed my mind about
them or because they're not working out. Sometimes the changes
are to what's available, sometimes it's a change in the way a certain
feature operates. The users have to get used to how the features
work and need to learn how to get certain results from them. You
have to cooperate or not cooperate with each version...

?: So in this sense your program is not really that different than
other software, like Adobe...

Auto-Illustrator Users Guide

 115

!: True, but Adobe wants as many people as possible to cooperate
with their programs, because they don't want to lose users. I don't
really have that problem. I can abuse my users as much as I want.

?: But is the idea to terrorize people with Auto-Illustrator? After all,
you can create something constructive with it...

!: Yeah, that's one of the minor points of it. It is supposed to be a
play on a useful utility, and something that really changes your
expectations. When you come to it, you're expecting it to behave
like a professional piece of software, because it looks like a
professional piece of software, but it's not. It has no respect for you.
But on the other hand sometimes the complete opposite is true.

?: how would you explain to a traditional art audience why it can be
art to write software

!: That's a difficult one. I'm not too interested in trying to be an artist,
even though I am obviously creating something that is culturally
aware and critiques existing systems, and I think those are
important factors for an artwork. Software as art challenges ideas
about how you interact with systems. People put computers into
galleries, which is of course completely misguided, because the
whole point of software is that you get hold of it and run it on your
own computer at home or work. How do you curate a piece of
software? It's difficult; I'm just trying to create more problems.
(laughs)

?: There is a traditional point of view, that art should be without
function..

!: I disagree with it. I think that art functions as a social or cultural
catalyst and provokes certain reactions and thoughts about things
that are important. Should art be purely expressive? Or does it have
some kind of functionality? I'm obviously confusing the issue more,
because Auto-Illustrator is an expression in the form of a tool. Also I
think we need to be careful to distinguish between the specific
functionality of a tool, and the social functionality of an artwork.

?: If you look at the program for the first time, it looks like an
ordinary drawing program. I think that there are some metaphors in
the software that run amok, they seem to have a life of their own
but others are useful, for example the generative parts...

!: The project has really gotten out of control. It started out as a
playful kind of toy, and now it is really this kind of platform for me to

Auto-Illustrator Users Guide

 116

explore certain generative ideas. We have this plug-in system,
where you write a piece of code, and Auto-Illustrator executes this
code and produces a design. Apart from being a challenging
application and a bit of joke, it is also a serious platform for many
people to express themselves visually through code. That's one of
the things I am very interested in.

?: There are generative parts in the software, that create designs
according to certain parameters that you define. Does that exist in
programs like Photoshop or Adobe Illustrator?

!: To a degree, it depends on how you use the term "generative".
You could actually argue that all software is generative, just by the
fact that code is pretty useless without some form of output. But you
do see a lot of generative features in other graphics programs. One
thing I want to articulate with Auto-Illustrator is that a lot of the
features that you see in Photoshop and Illustrator are a bit
pointless. I am trying to parody this useless kind of feature. What I
am doing is turning it around, trying to highlight that you shouldn't
necessarily accept what a programmer provides you with. You
should try to mutate the actual code (or in my case, rewrite it), and
use your own code to express yourself.

?: Auto-Illustrator keeps creating new patterns, shapes and other
graphical elements. I guess most designers don't want that in
"normal" programs, because at one point they will want to output
their piece as a hard copy, and you cannot show the generative
movement of an object on a piece of paper.

!: That's why I am fascinated by generative processes, because you
don't have a fixed end result. If you can produce a system that can
change the rules for generation, the final product you get is not
fixed at all. I think there is a lot more power in that. I think that
people are getting used to dynamic systems. I think that fixed
products are kind of out-dated. It's not my problem how deal with
translating variable results into fixed products - that's something for
the users to deal with.

?: Isn't it a paradoxical situation: you as the creator should know
best, what the software can do and how to work with it, yet you see
other people making creative use of it...

!: It is a bizarre thing to see other people using my software. I know
what the most optimal way of using it is, but then I see other people
coming along and they're not using it in that matter.

Auto-Illustrator Users Guide

 117

?: Are they right or wrong?

!: I don't think that there is any specific right or wrong way. If I don't
adhere to conventions when writing my software, why should my
users do the same? They are trying to find their own way of using it;
They work out how to do things their own way. And it's great that
they find their own uses for it. It's one of the great things of writing
software that people adapt it in new and exciting ways.

?: Do you ever see pieces that were created with "Auto-Illustrator",
and ask yourself: How did they do that?

!: Actually yes. We get guest designers for the splash screens of
every version of Auto-Illustrator. And sometimes I don't even
recognize that they have used my software, because I don't
recognize what they have done. That's just a sign that they really
worked with the software, and take it much further than I initially
imagined, which is an interesting model. I have taken an active role
in designing it, but actually the end result is beyond what I
imagined. So it blurs the boundaries between producer and
consumer even more. I like that.

?: I guess at companies like Adobe there are hundreds if not
thousand of programmers working on new versions of their
software. How is it with Auto-Illustrator?

!: Well, it's just me. I just sit there and write the software, but part of
the artwork is obviously a parody of a huge multinational
megacorporation, so we manufacture artificial employees and have
them answering customer's emails. I fool myself sometimes - I keep
on referring to Signwave as "we", when in fact it's just "me". I
started twelve months ago, and it's just not finished yet. Not that I
have any specific finishing point, though. The thing about Adobe is
that they have to be more careful. They have to write software that
works the first time, and doesn't crash and behaves exactly the way
it is supposed to. It's a massive job to do that. The process I am
going through is more of a personal expression of an artist, so
perhaps I'm not so concerned with the same issues. If something
doesn't work properly, I maybe tweak it slightly until it does work.
It's not perfect. But those kind of problems get absorbed by the fact
that people know that the software's idiosyncrasies are a reflection
of my own sense of humour. You see that when you use the
software, and you go through the preferences and dialog boxes.

?: So would you say that this software is kind of a digital self-
portrait?

Auto-Illustrator Users Guide

 118

!: Yes, exactly. That was the key thing, when I started off writing
generative software. Because I saw writing code as a way to
express myself, and I was interested in making something that
behaved perhaps a little like me. I am not a graphic designer, I am
a programmer by history, so I use my skills as a programmer to
express myself. Code is the basic medium that I choose to use to
allow other people to interact with me (or my work?).

?: But a lot of the features of the software are very standardized:
there are drop-down menus, there are icons, there are features that
are not so different from other graphics software. How does this
express your personality? There doesn't seem to be a lot of artistic
freedom in these standardized features.

!: I am definitely trying to parody Adobe's interfaces, so it wouldn't
really make sense to move completely away from the traditional UI
standards of software. I also have this problem with radical
interfaces. Just because software does something different, it
doesn't mean that it needs a new interface. Yet everybody is trying
to invent this perfect new interface, and everybody has this big
hang-up about the GUI and Windows, Icons, Menus and Pointers.
They say it is out-dated, but the reason it has been around for such
a long time is because it simply works. To be more specific, code
isn't really the medium I'm using - I want to express myself using
the medium of consumer-based application software, which is why
Auto-Illustrator doesn't have a radical interface. It doesn't need one.
It wouldn't be a parody otherwise, too.

?: How did you get the idea to write your own graphics software?

!: It all came from my childhood as a programmer...

?: Your *childhood* as a programmer?

!: I started programming when I was seven. My parents bought me
a ZX Spectrum, a little 8-bit home computer. They thought that I
wasted my time on it, and I probably did. I wrote programs for it that
scribbled and so on. I never had a proper education as a
programmer. If I had, then I'd be writing SQL statements for banks
or something uninspiring like that. One thing I am trying to say is
that code doesn't really have to be boring, especially if you explore
it's potential for yourself. SELECT INSPIRATION FROM CODE
WHERE EXPRESSION IS NOT NIL.

Auto-Illustrator Users Guide

 119

?: But how does somebody with a background in programming
come up with the idea to write a graphics program?

!: I was always interested in design and popular culture, and how
trends spread in graphic design. I just observed that certain kind of
behaviours exist, for example in web design, which has become a
bit stale. Because I'm not a graphic designer by trade, I don't really
have much to lose. I can get away with being troublesome. I would
just like to see more interesting uses of technology in graphic
design.

?: What your program seems to imply is that a computer could do
what most designers are doing...

!: The specific point I have there is about appropriation. Whatever a
company like "The Designers Republic" is doing, people just copy it
("Talent borrows, genius steals, shit copies”). It must be very hard
for them to innovate and do new stuff. What I am saying is that
copying other people's stuff is not very constructive. If I can
automate that process then maybe I'll put all the uninnovative
designers out of business. (laughs)

?: In the Nineties we saw how the computer changed certain
elements of pop culture. Techno Music, Webdesign, Typography,
Cinema - a lot of different cultural forms were shaped by the use of
digital technology. Now these impulses seem a bit worn-out.
Electronic music sounds more and more alike, the same is true for
the covers of the CDs that were created on the computer etc. Is
"Auto-Illustrator" also an attempt to address this situation?

!: The idea is that technology is not just a delivery medium or tool, it
is a production system. You could use a computer to score some
music or design a CD cover, but what I am saying is: You can also
use technology in a much more interesting manner, and maybe
that's the problem that has inflicted pop culture - not enough tools
and too much complacency. I'd like to see a much more engaging
use of technology through the use of generative systems. It would
be great if more people would realize what they can do with
technology rather than just using what is given to them as a tool.
They can extend the technology themselves, and that is the really
critical part.

?: Do you see yourself working on another kind of software, for
example an Operating System? Or will you continue to work on
Auto-Illustrator?

Auto-Illustrator Users Guide

 120

!: I'd love to work on an Operating System. I'd like to see an
Operating System that misbehaves intentionally. Auto-Illustrator will
never be finished. There will be a version 1.0, but that wont be the
end of it. I don't think that I will ever be able to put a cap on it,
because it's a platform for my interests. The difficult thing is to
bounce it between being a commercial product and a medium for
my new ideas.

?: The British artist Harold Cohen has attempted to build a robot,
that can paint pictures completely autonomously. Do you know
him? Because I think there a lot of obvious similarities between
your work and his.

!: I don't know him personally, but I am familiar with his work. He
has an interesting attitude. It's a massive undertaking to develop
software that operates like the human brain. What I find interesting
about Cohen's work is that Aaron doesn't do this through Artificial
Intelligence, which I think is a buzzword used in tedious scientific
research. I think you can express yourself by writing code and still
achieve a similar state of semi-autonomous code. It's just a shame
that he spent 20 years writing this system "Aaron" and now it looks
like a screensaver (laughs). His work is quite influential for me,
because he has used code as a form of personal expression.

?: Could you comment on your decision to sell the software now:
Other art projects are freely downloadable from the net, why did
you decide to sell yours? How many people have bought it so far?

!: Auto-Illustrator is a parody of commercial software, so it makes
sense to commodify it. It's also a response to the difficult question
of how do you treat software art, especially if you want to curate it?
You sell it in boxes, just like you might in PC World. We're doing
that for Auto-Illustrator 1.1, which is going to be on released as a
boxed set for the GENERATOR show at Spacex in Exeter. It's
going to be very exciting. A few people have bought Auto-Illustrator
1.0 - enough to ensure I carry on developing it.

Auto-Illustrator Users Guide

 121

Auto-Illustrator Users Guide

 122

Auto-Illustrator Users Guide

 123

INDEX

"%wrong browser, 92
.afx file, 42
A.I., 67
abstract, 27
Adobe™, 59, 62, 63,

65, 67, 114, 115,
116, 117, 118

Adobe™
Illustrator™, 65

Adobe™
Photoshop™, 59,
62, 63, 66, 95,
116

Adobe™ Sitemill™,
62

Advanced features,
41

aesthetics, 109, 110,
112

Agency, 86
agenda, 114
Albert, Saul, 59, 89
album covers, 62, 66
amok, 115
analogy, 82, 107
anthropomorphosisat

ion, 61
Apple, 2, 47, 72
Applescript, 52
Apple™, 89
architecture, 28, 105
Ars Electronica, 84
art, 18, 61, 81, 82,

83, 85, 86, 87,
101, 102, 105,
107, 108, 109,
110, 111, 112,
115, 120

Art for art's sake, 89
Artificial Intelligence,

44, 120
artificial life, 84
artificiality, 85
artist, 7, 72, 73, 81,

82, 84, 85, 102,
109, 111, 115,
117, 120

art-machines, 81
ASCII art, 96
ASM, 52, 56
aura, 81, 82
authentic, 81
authenticity, 81

author, 2, 81, 83, 84,
87, 89, 103

authority, 81
authorship, 59, 81,

84, 86, 93, 94, 96,
97

Auto-Effects, 42
auto-generation, 85
Auto-Illustrator, 1, 2,

7, 9, 18, 19, 21,
23, 24, 32, 39, 41,
42, 43, 44, 45, 47,
48, 51, 53, 59, 61,
62, 63, 93, 94, 95,
96, 97, 114, 115,
116, 117, 118,
119, 120

automation, 119
Automation Tool, 41
autonomous, 23, 85,

120
Autonomy, 85
Autoshop, 2, 24, 59,

61, 71, 72, 73, 85,
87

Ball, Hugo, 103
Bastit, Tristan, 73
Baudrillard, 84
Baumgärtel, Dr.

Tilman, 59, 114
Benjamin, Walter, 83
Berlin Beta (festival),

114
Betts, Tom

(Nullpointer), 92;
Webtracer, 92

bizarre, 116
Brush Tool, 23;

crayon, 24, 39,
80; distance, 24,
75; I am
incapable, 24;
jerkiness, 24, 75;
length, 24;
wander, 24, 75;
watch me, 24

bug, 31, 32, 77, 78,
87

Bug Add Tool, 30
Bug Remove Tool,

31, 32
Bugs, 30, 31, 32, 77,

78, 93, 94, 114;

attention, 31;
behaviours, 30;
distraction, 31;
exterminate, 30,
32; maturity, 31;
nervousness, 31;
orientating, 31

Burnham, Jack, 107
buzzword, 84, 120
C (language), 52, 53,

54, 101, 107
Cage, John, 101,

112
Calvino, Italo, 81
CD covers, 119
chaos, 73, 82, 114
Chaos Computer

Club (CCC), 111
childhood, 118
Cinema, 119
club flyers, 62
code, 44, 51, 52, 53,

54, 55, 56, 61, 63,
72, 73, 74, 75, 76,
78, 79, 80, 82, 84,
85, 86, 87, 101,
102, 104, 105,
106, 107, 108,
109, 110, 111,
116, 118, 120

coding, 62, 86, 102
Cohen, Harold, 67,

120; Aaron, 67,
120

Colour Picker, 39;
average colour,
39

colours, 37, 39
complacency, 119
consonants, 16, 78
control points, 11,

12, 13, 25, 40
Cox, Geoff, 59, 110,

111, 112
CPU, 48, 49, 73
CPU cycles, 48, 49
Cramer, Florian, 59,

101
crash, 114, 117
crayons, 80
creativity, 61, 72, 81,

82, 83, 84, 85, 86,
87

Auto-Illustrator Users Guide

 124

criticize, 62
critique, 81, 85, 87
crude, 85
cultural, 83, 84, 85,

109, 110, 115,
119

cultural catalyst, 115
d.i.n.a. (festival), 65
Dada, 103, 106, 109
Darwin, 74
Dawkins, Richard, 74
death, 81, 84
Death Penalty, 45
debug, 32
Delicate, 33, 35
dematerialisation, 18
digital self-portrait,

117
Do cool things, 45
dogma, 84, 85
Don’t push this

button, 45
Dorkbot, 110
Double-click, 38
draw a picture, 80
Draw a straight line

and follow it, 108
Duchamp, Marcel, 82
duplicate, 36
dystopia, 67
emergent behaviour,

94
equal aspect ratio,

17, 20
eu-gene (mailing

list), 110
Exeter, 120
expert systems, 67
expressive, 27, 71,

115
Extra-verbose, 49
Fill Selector, 40
Finger Painting, 73
Fluxus, 93
Flynt, Henry, 107,

108, 112
folk music, 101
forkbomb.pl, 109,

110
Free Software

Foundation, 84
freehand paths, 21
free-market, 84
Friends of Ed, 59
frustrate, 62
Fuller, Matthew, 92
Fuller. Matthew, 110
Gabriel, Ulrike, 111

Gautier, Théophile,
89

generative art, 59,
81, 82, 86

generative
processes, 116

GENERATOR Show,
120

Gibson, William, 71
god, 81, 84
Gogh, L.V., 73
guest designers, 117
GUI, 118
Gutenberg (Project),

112
Hackers, 62, 112
Hackers Helper, 62
Hand Tool, 38
Haraway, Donna, 86
Harwood, Graham,

110
Heavy-handed, 33,

35
Hennix, Christer, 108
Hoxton Foundry, 61
huge multinational

megacorporation,
117

hypertext, 105, 107
I/O/D, 91, 110
ignorance, 101
Important, 45
inspiration, 24, 45
inspire, 62
Instant Results, 67
intelligence, 73, 83,

85
Interface

Condescension,
71

Interview, 114
IRCAM, 101
irony, 82
Jasch, 43
Jodi, 92, 98
joke, 116
Joyce, James, 101
Kac, Eduardo, 84
Karhalev, Eldar, 109
Kelly, Kevin, 84
Khimin, Ivan, 109
Kittler, Friedrich, 106
KJX Profile

Resource, 49
KJX™, 47, 48, 49
Knuth, Donald E.,

109, 110

Kuhlmann, Quirinus,
108, 112

language, 16, 43, 44,
51, 52, 69, 96, 99,
104, 106, 107,
108, 110, 111

large software
development
company, 63

Leandre, Joan, 109
Leibnitz, 82
Levy, Steven, 109,

111, 112
LeWitt, Sol, 108
license agreement,

63
Lindenmayer, Aristid,

93
Lingo, 52
Linux, 2, 43, 84
London, 1, 110
Macintosh, 2, 7, 59,

73, 74
MacOS, 2, 47
Macromedia™, 63,

89
Maeda, John, 66
Magnet Tool, 25;

promiscuity, 25;
reverse polarity,
25

make up words, 15,
78

malicious, 63
Max, 2, 43, 51
McDavid-Davies,

David, 61
McLean,

(Christopher)
Alex, 110, 111,
112

media art, 102
medium, 71, 102,

108, 118, 119,
120

Microsoft™, 2, 109,
110

Milan, 81
mind share, 90
misbehave, 114
Mongrel, 99, 110
Morse Code, 84
Multimedia, 34, 71
Multiple objects:

selecting, 11
myth, 71
Nelson, Ted, 107

Auto-Illustrator Users Guide

 125

Neo-Pythagorean,
109

net.art, 84, 107
Netochka

Nezavanova, 95,
96

netreceive, 43, 51
neural networks, 83
New York, 107, 112
Nezvanova,

Netochka, 93;
antiorp, 96;
b1257+12, 93, 95,
97; integer, 51,
96; m9ndfukc, 96;
NATO.0+55. See

Nietzsche, 84
No options, 26, 29
Not Important, 45
O’Flynn, Catherine,

59
O'Brien, Danny, 84
Operating System,

119, 120
Orwell, George, 90
Oulipo, 69, 72, 81
Oval Tool, 17, 20
paradox, 116
Parallax, 26, 29, 33
Parallax Tool, 26
parody, 44, 65, 87,

116, 117, 118,
120

Pascal, 54
pastiche, 87
patronising, 71
Pause button, 42
pd, 2, 43, 51
Pencil Tool, 21; felt-

tip, 21, 22
Perl, 43, 96, 104,

106, 107, 111
perverse, 108
pharmaceutical

companies, 89
philosophy, 102
photography, 105
pi (3.141593), 75, 82
piracy protection, 97
Plug-In, 51, 52, 53,

73, 116
poeisis, 102
Point Tool, 12, 13
Polygon Tool, 13
pop culture, 119
Post-Structuralist

theory, 81
pragmatic, 44

Preferences, 11, 39,
45, 49

pretty microscope
photographs, 89

problem-solving, 82
programmer, 82, 83,

86, 105, 110, 116,
118

Programming, 82,
102, 109

Psychosis, 45, 49
Queneau, Raymond,

81
QuickTime™, 42
random, 16, 49, 72,

73, 75, 77, 82, 83,
101, 103, 104,
105

Real Software, 47
REALBasic, 47
Record button, 41,

42
Recording Tool, 42
Rectangle Tool, 20
Redundant CPU

cycle
enhancements,
49

repetitions, 36
research, 44, 59, 120
retroyou, 109
Rhizome, 98
Rivington Street,

Shoreditch, 66
Roaratorio, 101, 112
robotics, 81
Rotate Tool, 27, 33;

3D space, 28; flat
space, 27; have
depth, 28; same
axis, 28

Roussel, Raymond,
81

rule-based systems,
85

Scale Tool, 29
science, 83, 86, 109
Scissors Tool, 34;

chop, 34
scribble, 75, 76, 114
scroll bars, 38
Select nice shapes,

44
Selected objects:

moving, 11
seminars, 62
senddata, 43, 51, 53

Shakespeare,
William, 87

Shapes: adult, 18;
artistic, 18;
childish, 18;
closing, 14; fill,
40; filled, 14;
hollow, 14, 40;
montaging, 19;
preciseness, 18,
20

Shockwave™ Flash,
42

shortcut keys, 38
Signwave, 1, 2, 7,

42, 43, 45, 48, 59,
61, 62, 63, 71, 72,
96, 114, 117

Sims, Karl, 84
social, 83, 84, 85, 86,

110, 115
social context, 83
Software Art, 101,

106, 107, 110
Sony™, 89
SPACE key, 38
Spacex Gallery, 120
splash screens, 117
Spline Segments:

creating, 13
splines, 12; spline

handles, 12
spray, 36, 37
Spray Tool, 36;

current colour, 37;
familiar shapes,
36; favourite
colours, 37;
strong, 37; weak,
37

SQL, 44, 118
Stallman, Richard,

84
Step button, 42
stone: large block of,

69
Stop button, 42
stroke, 22, 24, 26,

27, 28, 29, 33
Stroke Tinting Tool,

33; restroke, 33;
tint options, 33,
35

stroke weights, 26,
27, 28, 33

Structured Query
Language, 44

student diaries, 62

Auto-Illustrator Users Guide

 126

subjective, 44
subjectivity, 44, 83,

85, 86, 110
Sub-processes, 49
subversion, 65
superficial, 102
Surfers Serials, 62
Swap Artwork, 94
systems, 48, 73, 74,

82, 83, 85, 101,
105, 110, 115,
116, 119

TCP/IP, 43
tcpClient, 43
tcpServer, 43, 51
Techno Music, 119
technoculture, 84
Technologies, 47
terrorize, 115
text file, 52
Text Tool, 15;

Slightly foreign,
16; Verbosity, 16

The Anti-Interface,
71

The Designers
Republic, 119

tint, 35
Tinting Tool, 35

Tippecanoe, Jon, 61,
96

Tool Palette, 9, 14,
38, 39; Select
Tool, 11, 38

Torvalds, Linus, 84
tracenoizer, 109
traditional, 84, 115,

118
transmediale, 109,

110
Twist, 27
Typography, 119
Tzara, Tristan, 106,

107, 109, 112
unpredictable, 9, 72,

73, 83
Variables, 53, 54
vowels, 16, 78
VRML, 71
wander, 24, 30, 76,

77
Ward, Adrian, 61,

71, 81, 93, 94, 95,
96, 97, 110, 111,
112, 114

Warp Records, 66
Webdesign, 119

Webstalker, 91, 92,
93, 98, 99

Windows, 2, 7, 43,
110, 118

Windows, Icons,
Menus and
Pointers, 118

workshops, 62
Wright, Nicola, 61
WYSINRWYG, 65
Xanadu, 107
xeoObject, 2, 43, 51,

52, 53, 54;
Conditional
statements, 54;
handlers, 52;
loops, 56

xeoObjects, 51, 53,
56

Young, La Monte,
107, 108, 109,
112

Z-depth, 26, 28, 29
zoom, 38
Zoom Tool, 38
ZX Spectrum, 118;

BASIC, 76, 78,
79, 80

